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Abstract

This paper presents a first main result on the existence
and uniqueness of solutions for a class of sixth order non-
linear fractional differential equations involving six sequential
Caputo derivatives. A second main result on Ulam- Hyers sta-
bility of solutions is also discussed. At the end, two examples
are discussed to show the applicability of the main findings.
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1 Introduction

Fractional calculus is a branch of mathematics that generalizes derivatives and
integrals to non-integer orders, allowing them to take any real or complex
value. This generalization provides a powerful tool for modeling processes
that exhibit nonlocal or memory-dependent behavior, which are often encoun-
tered in fields such as physics, biology, engineering, and finance. Unlike classi-
cal calculus, fractional calculus naturally captures systems where the current
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state depends on the entire history of the process, making it very suitable for
studying phenomena like anomalous diffusion, viscoelastic materials, and con-
trol systems, see, for example [3,6,17]. The Caputo derivative is particularly
useful for initial-value problems because it incorporates traditional initial con-
ditions. However, a key issue in the Caputo and Riemann-Liouville definitions
is the singularity of their non-local kernels, which limits their applicability to
real-world problems, as outlined in [4,12,25,30,32,36]. The present paper is
motivated by the need to cite and recall some classes of nonlinear differential
equations of high order, specifically in the context of the standard derivatives
with order six since the all the studied problem of sixth order can be seen
as limiting cases of our problem. These equations, accompanied by boundary
boundary conditions, provide a natural setting for incorporating global infor-
mation about the solution. Such problems arise in various applications, see for
instance [5,8,10,20,26,27,34,37]. R.P. Agarwal et al. in [2], the authors have
studied the equilibrium state of an elastic circular ring segment with its two
ends by a following problem of sixth-order:{

v(6) + 2v(4) + v′′ = f (x, v) , in Ω = (0, 1) ,
v = v′′ = v(4) = 0, on ∂Ω.

In [28], the authors studied the existence of positive solutions of the non-
linear boundary value problem:{

w(6) + f
(
x,w,w′′, w(4)

)
= 0, in Ω = (0, 1) ,

w = w′′ = w(4) = 0, on ∂Ω.

Then in [15], C.P. Danet studied the existence and multiplicity of solutions
for the problem:{

v(6) + Av(4) +Bv′′ + C (x) v + f (x, v) = 0, in Ω = (0, 1) ,
v = v′′ = v(4) = 0, on ∂Ω.

In the article [11], the author investigated the existence, regularity, and
uniqueness of solutions for the boundary value problem associated with a sixth-
order partial differential equation. He used classical methods, such as the
maximum principle and the method of P -functions, and extended uniqueness
results for equations with non-constant coefficients in higher dimensions.

∆3v − B̃(t)∆2v + C̃(t)∆v − D̃(t)v = G(t, v), in Ω,

with boundary conditions v = ∆v = ∆2v = 0 on ∂Ω, where Ω ⊂ NM is a
bounded domain.
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In a very recent paper, M. Kaid et al. [23], discussed the existence and
uniqueness of solutions for the following class of alpha-fractional order

CDαv(t) = M1F1(t, v
(4)(t)) +M2F2(t, v

(2)(t)) +M3F3(t, v(t)), t ∈ [0, 1] ,
v(0) = a0, v(1) = b0, a0, b0 ∈ R,
v′(0) = a1, v′(1) = b1, a1, b1 ∈ R,
v′′(0) = a2, v′′(1) = b2, a2, b2 ∈ R,

where CDα denote the Caputo fractional derivatives of order α such that 5 <
α ≤ 6, and u(η)(t), η ∈ {0, 2, 4} is derivative of the function u with respect
to t, where v: [0, 1] → R is a given continuous function and Ml (l = 1, 3) are
given constants.

Very recently, Bezziou et al. [7], discussed the existence and uniqueness of
solutions under boundary conditions of the form:


C
HD

δu(t) = λ1G1(t, u
(4)(t)) + λ2G2(t, u

(2)(t)) + λ3G3(t, u(t)), t ∈ [1, e] ,
u(1) = u′(1) = u′′(1) = 0,

u(e) = u′(e) = 0, u′′(e) = ρ
∫ e

1
u(t)

dt

t
, (λk)k=1,3 , ρ ∈ R,

where C
HD

δ denote the Caputo-Hadamard fractional derivative of order δ,
such that 5 < δ ≤ 6, and u(γ)(t), γ ∈ {0, 2, 4} are derivatives of u with respect
to t.

Also in [19], the authors discussed the existence and uniqueness for the
following equation:

DαDβDγχ(t) = F1(t, χ(t), D
βDγχ(t)) + F2(t, χ(t), D

γχ(t))

+F3(t, χ(t), I
ρχ(t)) + F4(t, χ(t)), t ∈ [0, 1] ,

with boundary conditions:


χ(0) = θ0, χ(1) = µ0,
Dγχ(t)(0) = θ1, Dγχ(1) = µ1,
DβDγχ(0) = θ2, DβDγχ(1) = µ2, θi, µi ∈ R, i = 0, 2,

where CDα,C Dβ,C Dγ denote the Caputo fractional derivatives of order α, β, γ
such that 1 < α, β, γ ≤ 2, Iρ is the Riemann-Liouville integral of order ρ such
that ρ > 0. the function χ with respect to t, where χ: [0, 1] → R is given
continuous function.

In this work, we discuss the existence and uniqueness of solutions for the
following sequential fractional differential problem:
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Dα1Dα2Dα3Dα4Dα5Dα6x(t) = m1(t, x(t), D

α3Dα4Dα5Dα6x(t)) +m2(t, x(t), D
α5Dα6x(t))

+m3(t, x(t), I
ξx(t)) +m4(t, x(t)), t ∈ [0, 1] ,

x(0) = ϵ0, x(1) = λ0, ϵ0, λ0 ∈ R,
Dα6x(0) = ϵ1, Dα6x(1) = λ1, ϵ1, λ1 ∈ R,
Dα5Dα6x(0) = ϵ2, Dα5Dα6x(1) = λ2, ϵ2, λ2 ∈ R,

(1)
where Dαi denote the Caputo fractional derivatives of order αi such that 0 <
αi ≤ 1, and Iξx is the Riemann-Liouville fractional integral order ξ ∈ [0,+∞[.

2 Preliminaries on Caputo Derivatives

We need to introduce the Caputo derivatives. For more details, we refer to the
references [1,9,13,14,18,22,23,30].

Definition 2.1 Let α > 0 and f : J 7−→ R be a continuous function. The
Riemann-Liouville integral is defined by:

Iαf(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ.

Definition 2.2 For any f ∈ Cn(J,R) and n− 1 < α ≤ n, the Caputo deriva-
tive is defined by:

Dαf(t) = In−α dn

dtn
(f(t))

=
1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds.

To study (1), we need the following two results [?]:

Lemma 2.3 Let n ∈ N∗, and n − 1 < α < n. Then, the general solution of
Dαy(t) = 0; t ∈ J is:

y(t) =
n−1∑
i=0

cit
i,

where ci ∈ R, i = 0, 1, 2, .., n− 1.

Lemma 2.4 If n ∈ N∗, and n− 1 < α < n, then, we have

IαDαy(t) = y(t) +
n−1∑
i=0

cit
i,

and ci ∈ R, i = 0, 1, 2, .., n− 1.
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Now, let us prove the following integral equation.

Lemma 2.5 Let S ∈ C(I). Then,
Dα1Dα2Dα3Dα4Dα5Dα6 x(t) = S(t), t ∈ [0, 1] ,
x(0) = ϵ0, x(1) = λ0, ϵ0, λ0 ∈ R,
Dα6 x(t)(0) = ϵ1, Dα6 x(1) = λ1, ϵ1, λ1 ∈ R,
Dα5Dα6 x(0) = ϵ2, Dα5Dα6 x(1) = λ2, ϵ2, λ2 ∈ R,

if and only if

x(t) = I

6∑
i=1

αi

S(t) + (Γ4
2)

−1Γ6
2

[
φ1 − φ2I

4∑
i=1

αi

S(1) + φ3I

5∑
i=1

αi

S(1) + φ4I

6∑
i=1

αi

S(1)

]

×t

6∑
i=2

αi

+ Γ6
3

[
ϕ1 + ϕ2I

4∑
i=1

αi

S(1) + ϕ3I

6∑
i=1

αi

S(1)− G1G2

δ
I

5∑
i=1

αi

S(1)

]
t

6∑
i=3

αi

+Γ6
4

[
∆1 +∆2I

4∑
i=1

αi

S(1) +
G1

δ
I

5∑
i=1

αi

S(1)− K1

δ
I

6∑
i=1

αi

S(1)

]
t

6∑
i=4

αi

+ϵ2Γ
6
5t

6∑
i=5

αi

+ ϵ1Γ
6
6t

α6 + ϵ0

(2)

where δ ̸= 0 and

φ1 = Z3−Γ4
3ϕ1−Γ4

4∆1, φ2 = 1+Γ4
3ϕ2+Γ4

4∆1, φ3 = Γ4
3

G1G2

δ
−Γ4

4

G1

δ
, φ4 = Γ4

4

K1

δ
−Γ4

3ϕ3

ϕ1 = (G1)
−1G3 −G2∆1, ϕ2 = (G1)

−1Γ6
2(Γ

4
2)

−1 −G2∆2, ϕ3 =
K1G2

δ
− (G1)

−1,

∆1 =
1

δ
(K1G3 −G1K3), ∆2 =

1

δ
(K1Γ

6
2 −G1Γ

5
2)(Γ

4
2)

−1, δ = K1G2 −K2G1,

K1 = Γ5
3 − Γ5

2(Γ
4
2)

−1Γ4
3, K2 = Γ5

4 − Γ5
2(Γ

4
2)

−1Γ4
4, K3 = Z2 − Γ5

2(Γ
4
2)

−1Z3

G1 = Γ6
3 − Γ6

2(Γ
4
2)

−1Γ4
3, G2 = Γ6

4 − Γ6
2(Γ

4
2)

−1Γ4
4, G3 = Z1 − Γ6

2(Γ
4
2)

−1Z3,

Z1 = λ0 − ϵ2Γ
6
5 − ϵ1Γ

6
6 − ϵ0, Z2 = λ1 − ϵ2Γ

5
5 − ϵ1, Z3 = λ2 − ϵ2,

Γj
k =

1

Γ(

j∑
i=k

αi + 1)

.
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Proof: We prove the first implication.
We utilise Lemma 2.4, we observe that

Dα2Dα3Dα4Dα5Dα6x(t) = Iα1S(t) + l0,

Dα3Dα4Dα5Dα6x(t) = Iα1+α2S(t) + l0
tα2

Γ(α2 + 1)
+ l1,

Dα4Dα5Dα6x(t) = Iα1+α2+α3S(t) + l0
tα2+α3

Γ(α2 + α3 + 1)
+ l1

tα3

Γ(α3 + 1)
+ l2,

Dα5Dα6x(t) = Iα1+α2+α3+α4S(t) + l0
tα2+α3+α4

Γ(α2 + α3 + α4 + 1)
+ l1

tα3+α4

Γ(α3 + α4 + 1)

+l2
tα4

Γ(α4 + 1)
+ l3,

Dα6x(t) = Iα1+α2+α3+α4+α5S(t) + l0
tα2+α3+α4+α5

Γ(α2 + α3 + α4 + α5 + 1)
+ l1

tα3+α4+α5

Γ(α3 + α4 + α5 + 1)

+l2
tα4+α5

Γ(α4 + α5 + 1)
+ l3

tα5

Γ(α5 + 1)
+ l4,

x(t) = Iα1+α2+α3+α4+α5+α6S(t) + l0
tα2+α3+α4+α5+α6

Γ(α2 + α3 + α4 + α5 + α6 + 1)

+l1
tα3+α4+α5+α6

Γ(α3 + α4 + α5 + α6 + 1)
+ l2

tα4+α5+α6

Γ(α4 + α5 + α6 + 1)
+ l3

tα5+α6

Γ(α5 + α6 + 1)

+l4
tα6

Γ(α6 + 1)
+ l5,

we have

x(0) = ϵ0 ⇒ l5 = ϵ0

Dα6 x(0) = ϵ1 ⇒ l4 = ϵ1

Dα5Dα6 x(0) = ϵ2 ⇒ l3 = ϵ2

By considering

x(1) = λ0,
Dα6 x(1) = λ1,
Dα5Dα6 x(1) = λ2,
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we get:

l2 =

[
∆1 +∆2I

4∑
i=1

αi

S(1) +
G1

δ
I

5∑
i=1

αi

S(1)− K1

δ
I

6∑
i=1

αi

S(1)

]
,

l1 =

[
ϕ1 + ϕ2I

4∑
i=1

αi

S(1) + ϕ3I

6∑
i=1

αi

S(1)− G1G2

δ
I

5∑
i=1

αi

S(1)

]
,

l0 = (Γ4
2)

−1)

[
φ1 − φ2I

4∑
i=1

αi

S(1) + φ3I

5∑
i=1

αi

S(1) + φ4I

6∑
i=1

αi

S(1)

]
.

We achieve the proof.
In what follows, we need both

B := {x ∈ C(J,R), Dα5Dα6x ∈ C(J,R), Dα3Dα4Dα5Dα6x ∈ C(J,R)},

and

∥x∥B = ∥x∥∞ + ∥Dα5Dα6x∥∞ + ∥Dα3Dα4Dα5Dα6x∥∞

where,
∥x∥∞ = sup

t∈J
|x(t)| , ∥Dα5Dα6x∥∞ = sup

t∈J
|Dα5Dα6x(t)|.

∥Dα3Dα4Dα5Dα6x∥∞ = sup
t∈J

|Dα3Dα4Dα5Dα6x(t)|.

Then, we consider the application U : B → B, such that

Ux(t) = I

6∑
i=1

αi

S∗
x(t) + (Γ4

2)
−1Γ6

2

[
φ1 − φ2I

4∑
i=1

αi

S∗
x(1) + φ3I

5∑
i=1

αi

S∗
x(1)

+φ4I

6∑
i=1

αi

S∗
x(1)

]
t

6∑
i=2

αi

+ Γ6
3

[
ϕ1 + ϕ2I

4∑
i=1

αi

S∗
x(1) + ϕ3I

6∑
i=1

αi

S∗
x(1)

−G1G2

δ
I

5∑
i=1

αi

S∗
x(1)

]
t

6∑
i=3

αi

+ Γ6
4

[
∆1 +∆2I

4∑
i=1

αi

S∗
x(1) +

G1

δ
I

5∑
i=1

αi

S(1)

−K1

δ
I

6∑
i=1

αi

S∗
x(1)

]
t

6∑
i=4

αi

+ ϵ2Γ
6
5t

6∑
i=5

αi

+ ϵ1Γ
6
6t

α6 + ϵ0
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where

S∗
x(t) = m1(t, x(t), D

α3Dα4Dα5Dα6x(t)) +m2(t, x(t), D
α5Dα6x(t)) +m3(t, x(t), I

ξx(t))
+m4(t, x(t)).

3 Main results

We shall consider what follows:
(ϖ1) : We suppose that m1,m2 and m3 are defined on [0, 1] × R2 and

continuous, and m4 is defined on [0, 1]× R and continuous.
(ϖ2) : There exist some functions ni, zi, θi, i = 1, 2, such that for any t ∈ J ,
xi, yi ∈ R, i = 1, 2,

|m1(t, x1, x2)−m1(t, y1, y2)| ≤
2∑

i=1

ni(t)| xi − yi|,

|m2(t, x1, x2)−m2(t, y1, y2)| ≤
2∑

i=1

zi(t)| xi − yi|,

|m3(t, x1, x2)−m3(t, y1, y2)| ≤
2∑

i=1

θi(t)| xi − yi|,

(ϖ3) : There exist a continuous function p, for any t ∈ J , x, y ∈ R,

|m4(t, x)−m4(t, y)| ≤ p(t)| x− y|.

We suppose:

n∗ = max{sup
t∈J

|n1(t)|, sup
t∈J

|n2(t)|} z∗ = max{sup
t∈J

|z1(t)|, sup
t∈J

|z2(t)|}

θ∗ = max{sup
t∈J

|θ1(t)|, sup
t∈J

|θ2(t)|} p∗ = sup
t∈J

|p(t)|.

3.1 Banach Contraction Principle for a Unique Solution

First, let us put

µ1 = Γ6
1Υ+Υ(Γ4

2)
−1Γ6

2

(
|φ2|Γ4

1 + |φ3|Γ5
1 + |φ4|Γ6

1

)
+ Γ6

3Υ

(
|ϕ2|Γ4

1 + |ϕ3|Γ6
1 + |G1G2

δ
|Γ5

1

)

+Γ6
4Υ

(
|∆2|Γ4

1 + |G1

δ
|Γ5

1 + |K1

δ
|Γ6

1

)
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µ2 = Γ4
1Υ+Υ(Γ4

2)
−1Γ4

2

(
|φ2|Γ4

1 + |φ3|Γ5
1 + |φ4|Γ6

1

)
+ Γ4

3Υ

(
|ϕ2|Γ4

1 + |ϕ3|Γ6
1 + |G1G2

δ
|Γ5

1

)

+Γ4
4Υ

(
|∆2|Γ4

1 + |G1

δ
|Γ5

1 + |K1

δ
|Γ6

1

)

µ3 = Γ2
1Υ+Υ(Γ4

2)
−1Γ2

2

(
|φ2|Γ4

1 + |φ3|Γ5
1 + |φ4|Γ6

1

)
+Υ

(
|∆2|Γ4

1 + |G1

δ
|Γ5

1 + |K1

δ
|Γ6

1

)

Υ =

(
θ∗ + n∗ + z∗ + θ∗

Γ(ζ+1)
+ p

)
where δ ̸= 0.
Now, we pass to establish the following result:

Theorem 3.1 Assume that (ϖ1), (ϖ2), (ϖ3) are satisfied. Then, (1) has a

unique solution if
3∑

i=1

µi ∈]0, 1[.

Proof:

Let (x, y) ∈ B2, we can write

∥U(x)− U(y)∥∞

≤ Γ6
1

(
θ∗ + n∗ + z∗ + θ∗

Γ(ζ+1)
+ p

)
∥x− y∥B

+

(
θ∗ + n∗ + z∗ + θ∗

Γ(ζ+1)
+ p

)
(Γ4

2)
−1Γ6

2

(
|φ2|Γ4

1 + |φ3|Γ5
1 + |φ4|Γ6

1

)
∥x− y∥B

+

(
θ∗ + n∗ + z∗ + θ∗

Γ(ζ+1)
+ p

)
Γ6
3

(
|ϕ2|Γ4

1 + |ϕ3|Γ6
1 + |G1G2

δ
|Γ5

1

)
∥x− y∥B

+Γ6
4

(
θ∗ + n∗ + z∗ + θ∗

Γ(ζ+1)
+ p

)(
|∆2|Γ4

1 + |G1

δ
|Γ5

1 + |K1

δ
|Γ6

1

)
∥x− y∥B

≤

(
θ∗ + n∗ + z∗ + θ∗

Γ(ζ+1)
+ p

)[
Γ6
1 + (Γ4

2)
−1Γ6

2

(
|φ2|Γ4

1 + |φ3|Γ5
1 + |φ4|Γ6

1

)

+Γ6
3

(
|ϕ2|Γ4

1 + |ϕ3|Γ6
1 + |G1G2

δ
|Γ5

1

)
+ Γ6

4

(
|∆2|Γ4

1 + |G1

δ
|Γ5

1 + |K1

δ
|Γ6

1

)]
∥x− y∥B

≤ µ1∥x− y∥B
.
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Dα5Dα6Ux(t) = I

4∑
i=1

αi

S∗
x(t) + (Γ4

2)
−1Γ4

2

[
φ1 − φ2I

4∑
i=1

αi

S∗
x(1) + φ3I

5∑
i=1

αi

S∗
x(1)

+φ4I

6∑
i=1

αi

S∗
x(1)

]
t

4∑
i=2

αi

+ Γ4
3

[
ϕ1 + ϕ2I

4∑
i=1

αi

S∗
x(1) + ϕ3I

6∑
i=1

αi

S∗
x(1)

−G1G2

δ
I

5∑
i=1

αi

S∗
x(1)

]
t

4∑
i=3

αi

+ Γ4
4

[
∆1 +∆2I

4∑
i=1

αi

S∗
x(1)

+
G1

δ
I

5∑
i=1

αi

S(1)− K1

δ
I

6∑
i=1

αi

S∗
x(1)

]
tα4 + ϵ2

∥Dα5Dα6U(x)−Dα5Dα6U(y)∥∞ ≤ Γ4
1Υ∥x− y∥B

+Υ(Γ4
2)

−1Γ4
2

(
|φ2|Γ4

1 + |φ3|Γ5
1 + |φ4|Γ6

1

)
∥x− y∥B

+ΥΓ4
3

(
|ϕ2|Γ4

1 + |ϕ3|Γ6
1 + |G1G2

δ
|Γ5

1

)
∥x− y∥B

+Γ4
4Υ

(
|∆2|Γ4

1 + |G1

δ
|Γ5

1 + |K1

δ
|Γ6

1

)
∥x− y∥B

≤ Υ

[
Γ4
1 + (Γ4

2)
−1Γ4

2

(
|φ2|Γ4

1 + |φ3|Γ5
1 + |φ4|Γ6

1

)

+Γ4
3

(
|ϕ2|Γ4

1 + |ϕ3|Γ6
1 + |G1G2

δ
|Γ5

1

)
+ Γ4

4

(
|∆2|Γ4

1

+|G1

δ
|Γ5

1 + |K1

δ
|Γ6

1

)]
∥x− y∥B

≤ µ2∥x− y∥B
.
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Dα3Dα4Dα5Dα6Ux(t) = I

2∑
i=1

αi

S∗
x(t) + (Γ4

2)
−1Γ2

2

[
φ1 − φ2I

4∑
i=1

αi

S∗
x(1)

+φ3I

5∑
i=1

αi

S∗
x(1) + φ4I

6∑
i=1

αi

S∗
x(1)

]
tα2 + Γ4

3

[
ϕ1

+ϕ2I

4∑
i=1

αi

S∗
x(1) + ϕ3I

6∑
i=1

αi

S∗
x(1)−

G1G2

δ
I

5∑
i=1

αi

S∗
x(1)

]

∥Dα3Dα4Dα5Dα6U(x)−Dα3Dα4Dα5Dα6U(y)∥∞

≤ Γ2
1Υ∥x− y∥B +Υ(Γ4

2)
−1Γ2

2

(
|φ2|Γ4

1 + |φ3|Γ5
1 + |φ4|Γ6

1

)
∥x− y∥B

+Υ

(
|ϕ2|Γ4

1 + |ϕ3|Γ6
1 + |G1G2

δ
|Γ5

1

)
∥x− y∥B

≤ Υ

[
Γ2
1 + (Γ4

2)
−1Γ2

2

(
|φ2|Γ4

1 + |φ3|Γ5
1 + |φ4|Γ6

1

)

+

(
|ϕ2|Γ4

1 + |ϕ3|Γ6
1 + |G1G2

δ
|Γ5

1

)]
∥x− y∥B

≤ µ3∥x− y∥B
.

Consequently, we observe that

∥U(x)− U(y)∥B ≤ (µ1 + µ2 + µ3)∥x− y∥B.

Hence, by Banach fixed point theorem, F has a unique fixed point which is
the unique solution of (1).

3.2 An Ulam Hyers Stability Result

First, we introduce the following definition related to our problem.

Definition 3.2 The equation (1) has the Ulam Hyers stability if there exists
a real number ρ > 0, such that for each ϱ > 0, t ∈ [0, 1] and for each x ∈ B
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solution of the inequality∣∣Dα1Dα2Dα3Dα4Dα5Dα6x(t)−m1(t, x(t), D
α3Dα4Dα5Dα6x(t))

−m2(t, x(t), D
α5Dα6x(t))−m3(t, x(t), I

ξx(t))−m4(t, x(t))| ≤ ϱ,
(3)

under the following conditions:
x(0) = ϵ0, x(1) = λ0, ϵ0, λ0 ∈ R,
Dα6x(0) = ϵ1, Dα6x(1) = λ1, ϵ1, λ1 ∈ R,
Dα5Dα6x(0) = ϵ2, Dα5Dα6x(1) = λ2, ϵ2, λ2 ∈ R,

there exists x∗ ∈ B a solution of (1), such that

∥x− x∗∥B ≤ ρϱ.

Definition 3.3 The equation (1) has the Ulam Hyers stability in the general-
ized sense if there exists ρ ∈ C(R+,R+); ρ(0) = 0, such that for each ϱ > 0,
and for any x ∈ B solution of (3), there exists a solution x∗ ∈ B of (1), such
that

∥x− x∗∥B < ρ(ϱ).

Now, we propose the following theorem

Theorem 3.4 The conditions of Theorem (3.1) allow us to state that problem
(1) is Ulam Hyers stable.

Proof: Let x ∈ B be a solution of (3), and let, by Theorem 3.1, x∗ ∈ B
be the unique solution of (1).
By integration of (3), we obtain

∣∣∣∣x(t)− I

6∑
i=1

αi

S∗
x(t)− (Γ4

2)
−1Γ6

2

[
φ1 − φ2I

4∑
i=1

αi

S∗
x(1) + φ3I

5∑
i=1

αi

S∗
x(1)+

φ4I

6∑
i=1

αi

S∗
x(1)

]
t

6∑
i=2

αi

− Γ6
3

[
ϕ1 + ϕ2I

4∑
i=1

αi

S∗
x(1) + ϕ3I

6∑
i=1

αi

S∗
x(1)

−G1G2

δ
I

5∑
i=1

αi

S∗
x(1)

]
t

6∑
i=3

αi

− Γ6
4

[
∆1 +∆2I

4∑
i=1

αi

S∗
x(1) +

G1

δ
I

5∑
i=1

αi

S(1)

−K1

δ
I

6∑
i=1

αi

S∗
x(1)

]
t

6∑
i=4

αi

− ϵ2Γ
6
5t

6∑
i=5

αi

− ϵ1Γ
6
6t

α6 − ϵ0

∣∣∣∣ ≤ ϱΓ6
1

.
(4)
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Using (3) and (4), we get

∥x− x∗∥∞ ≤ ϱΓ6
1 + µ1∥x− x∗∥∞.

Also, we have

∥Dα5Dα6(x− x∗)∥∞ ≤ ϱΓ4
1 + µ2∥Dα5Dα6(x− x∗)∥∞.

and

∥Dα3Dα4Dα5Dα6(x− x∗)∥∞ ≤ ϱΓ2
1 + µ3∥Dα3Dα4Dα5Dα6(x− x∗)∥∞.

So
∥x− x∗∥B ≤ ϱ(Γ6

1 + Γ4
1 + Γ2

1) + (µ1 + µ2 + µ3)∥x− x∗∥B,

∥x− x∗∥B ≤ ϱ(Γ6
1 + Γ4

1 + Γ2
1)

1−
3∑

i=1

µi

.

Thus,

∥x− x∗∥B ≤ ρϱ,

where

ρ =
Γ6
1 + Γ4

1 + Γ2
1

1−
3∑

i=1

µi

.

Thus, (1) has the Ulam Hyers stability.

Remark 3.5 When ρ(ϱ) = ϱ.ρ, we have the generalised Ulam Hyers stability
for (1).

Example 3.6 Consider the problem:

D 1
2D 1

3D 1
4D 2

5D 3
4D 4

5x(t) =
(1 + x(t))

e
√
t

D 1
4D 2

5D 3
4D 4

5x(t) +
(1− x(t)) cos t

1 +
√
t

D 3
4D 4

5x(t)

+
x(t)

1 + ln t
I 1

2x(t) + sin t+ x(t), t ∈ [0, 1] ,

x(0) = 1, x(1) = e,

D 4
5x(0) =

√
2, D 4

5x(1) = 1

D 3
4D 4

5x(0) =
√
3, D 3

4D 4
5x(0) =

1

2
.

(5)
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We have

m1(t, x(t),D
1
4D 2

5D 3
4D 4

5x(t)) =
(1 + x(t))

e
√
t

D 1
4D 2

5D 3
4D 4

5x(t),

m2(t, x(t),D
3
4D 4

5x(t)) =
(1− x(t)) cos t

1 +
√
t

D 3
4D 4

5x(t),

m3(t, x(t), I
1
2x(t)) =

x(t)

1 + ln t
I 1

2x(t),

m4(t, x(t)) = sin t+ x(t).

These functions are continuous over [0, 1] . Also, one can see that
α1 =

1

2
, α2 =

1

3
, α3 =

1

4
, α4 =

2

3
, α5 =

3

4
, α6 =

4

5
,

ϵ0 = 1, ϵ1 =
√
2, ϵ2 =

√
3, λ0 = e, λ1 = 1, λ2 =

1

2
, ξ =

1

2
.

Also, for all t ∈ [0, 1] , we can write

|m1(., x1, x2)−m1(., y1, y2)| ≤
|x2|
e
√
t
|x1 − y1|+

|1 + y1|
e
√
t

|x2 − y2| ,

then

n1(t) =
|x2|
e
√
t
, n2(t) =

|1 + y1|
e
√
t

and |m2(., x1, x2)−m2(., y1, y2)| ≤
|cos t|
1 +

√
t
|x1 − y1|+

|cos t|
1 +

√
t
|x2 − y2| ,

|y2| < 1.

Therefore,

z1(t) = z2(t) =
|cos t|
1 +

√
t
.

Using the same arguments as before, we get{
|m3(t, x1, x2)−m3(t, y1, y2)| ≤

1

1 + ln t
|x1 − y1|+

1

1 + ln t
|x2 − y2| ,

|x1| < 1, |y2| < 1.

Hence,

θ1(t) = θ2(t) =
1

1 + ln t
.

In addition, we have

|m4(., x1)−m4(., y1)| ≤ |x1 − y1| ,



A Class of Differential Equations Involving Six Caputo Derivatives 61

where

p(t) = 1.

On other hand, we have

µ1 = 0, 101, µ2 = 0, 019, µ3 = 0, 007,

then
3∑
k

µk = 0, 127 ∈ ]0, 1[ .

Hence, (5) has a unique solution on [0, 1] .

Example 3.7 Consider the following second example:

D 11
12D 11

13D 11
14D 12

15D 13
14D 14

15y(t) =
y(t)

π + sin 7

(
D 1

4D 2
5D 3

4D 4
5

)
y(t)

+

(
y(t)

1 +
√
2
+ 100

)(
D 3

4D 4
5

)
y(t)

+y(t)I1y(t) +
y(t)

ln t+ e
, t ∈ [0, 1] ,

x(0) =
1

π
, x(1) =

√
e,

D 14
15y(0) =

√
2

2
, D 14

15y(1) =
1

1 + ln 5

D 13
14D 14

15y(0) =
1

π +
√
3
, D 13

14D 14
15y(0) =

√
2

100 +
√
3
,

(6)

where

α1 =
11

12
, α2 =

11

13
, α3 =

11

14
, α4 =

12

13
, α5 =

13

14
, α6 =

14

15
,

and

ϵ0 =
1

π
, ϵ1 =

√
2

2
, ϵ2 =

1

π +
√
3
, λ0 =

√
e, λ1 =

1

1 + ln 5
, λ2 =

√
2

100 +
√
3
, ξ = 1.

We have
3∑
i

µi = 0, 0071859 < 1.

Consequently, (6) has a unique solution on [0, 1] .



62 S. Chibane, Y. Gouari, Z. Dahmani, M. Kaid

4 Open Problem

1: Is it possible to examine the Ulam-Hyers stability for the above ( regular)
class of nonlinear fractional differential equations by introducing a singular
perturbed term?
2: What can happened when we compare the regular ( initial) problem solu-
tions with those of the perturbed one?
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