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Abstract

In this paper, we study the existence and uniqueness of the
initial and boundary value problem for a class of higher order
semilinear parabolic partial differential equations with variable
coefficient. Based on a priori estimates of solution we proved
the existence of the weak solution in the form of Fourier series
under suitable conditions. For this purpose, Picard’s succes-
sive approximation method was used. Furthermore, we proved
the uniqueness of the weak solution.
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1 Introduction

In this paper, we examine the existence of a solution to the following initial
and boundary value problem

∂u

∂t
+ (−1)ktm

∂2ku

∂x2k
= f(x, t, u), (x, t) ∈ Ω = {0 < x < π, 0 < t < T} , 1(1)

u(x, 0) = 0, 0 ≤ x ≤ π, 2 (2)

∂2lu(0, t)

∂x2l
=

∂2lu(π, t)

∂x2l
= 0, l = 0, 1, 2, ..., k − 1, 0 ≤ t ≤ T, 3 (3)



32 O. Tantas and N. Polat

where k ≥ 1 are natural numbers, m > 0 and T > 0 is a real number, f(x, t, u)
is a given function defined in Ω × (−∞,∞), and u = u(x, t) is a solution to
the problem.

It is known that in the case of m = 0 and f(x, t, u) = F (x, t), the problem
with the non-homogeneous equation with homogeneous initial or boundary
conditions will turn into a problem with homogeneous equations and non-
homogeneous initial or boundary conditions, and also if the non-homogeneous
equation is given with non-homogeneous initial or boundary conditions, the
problem will turn into these two cases. The method of separation of variables
is widely used together with the principle of linear combination to solve these
problems. This method is also known as the Fourier series method or the
eigenfunction expansion method [1].

Baouendi and Grisvard showed that the boundary value problem for the
differential equation x∂u

∂t
+ (−1)m ∂2mu

∂x2m = F (x, t) has a unique solution [2].

Amanov and Ashyralyev showed the solvability of the initial and boundary
value problems and the boundary value problem for the differential equation
∂2ku
∂x2k + ∂2u

∂t2
= F (x, t) [3]. They established the well-posedness of the problem

depends on the evenness and oddness of the number k.

Amanov showed that the initial and boundary value problem for the dif-
ferential equation tm∂2ku

∂x2k + (−1)k ∂u
∂t

= F (x, t) has a unique solution [4].

In the references [5] and [6] it is showed that the initial and periodic bound-
ary value problem for the differential equations ∂u

∂t
− a2 ∂

2u
∂x2 = f(x, t, u) and

∂u
∂t

− a2 ∂
2u

∂x2 − ε ∂3u
∂x2∂t

= f(x, t, u) have unique solutions, respectively.

Yuldasheva showed the unique solvability of the problem with boundary
conditions with respect to t and periodic boundary conditions with respect to
x for the differential equation ∂2u

∂t2
− a2 ∂

2ku
∂x2k = f(x, t, u) [7].

Since the case of m > 0 and f(x, t, u) is considered in our current equation,
it is clear that it generalizes some of the studies given above. After giving the
weak solution in the form of a Fourier series containing the eigenfunctions ob-
tained from the eigenvalue problem related to the current problem, the uniform
convergence of the series related to the solution generated by Picard successive
approximations is shown. In addition, the uniqueness of the weak solution is
proven.

Definition 1.1 A function v(x, t) ∈ C2k(Ω) is called a test function if it
satisfies the boundary conditions in (3) and v(x, T ) = 0.
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Definition 1.2 The function u(x, t) ∈ C(Ω) that satisfies the following inte-
gral equation for an arbitrary test function v(x, t) is called a weak solution of
the problem (1)-(3):

T∫
0

π∫
0

[(
∂v

∂t
− (−1)ktm

∂2kv

∂x2k

)
u+ f(x, t, u)v

]
dxdt = 0. (4)

Using the weak solution in the form of Fourier series, we obtain an infi-
nite number of nonlinear integral equations for the Fourier series coefficients
from problems (1)-(3). The space in which the Fourier series coefficients are
solutions is defined and the appropriate norm is given.

Definition 1.3 Let BT denote the set of continuous functions which are Fourier
coefficients

{u(t)} = {u1, u2, ..., un, ...}

in the interval [0, T ] that satisfy the condition

∞∑
n=1

max
0≤t≤T

|un(t)| < ∞.

Let the norm in BT be defined as follows:

∥u(t)∥ =
∞∑
n=1

max
0≤t≤T

|un(t)| .

Clearly, BT is a Banach space.

2 Solution to the Problem

Let’s look for the weak solution of the problem (1)-(3) in the form

u(x, t) =
∞∑
n=1

un(t) sinnx, (5)

where un(t), (n = 1,∞) is the unknown function. To find it, the following
integral equation is obtained using equation (4):

un(t) =
2

π

t∫
0

π∫
0

e−
n2k

m+1(tm+1−τm+1)f

(
ξ, τ,

∞∑
n=1

un(τ) sinnξ

)
sinnξdξdτ. (6)
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Theorem 2.1 Under the following conditions, equation (6) admits a unique
solution in BT defined on time interval [0, T0) such that M2 (τ) =

max
0≤τ≤t≤T

∞∑
n=1

2
π

π∫
0

b (ξ, τ) |sinnξ| dξ and TM2 (τ) < 1:

1) f(x, t, u) is continuous with respect to all variables in Ω×R,
2) |f(x, t, u)− f(x, t, v)| ≤ b(x, t) |u− v|, b(x, t) > 0, b(x, t) ∈ C1(Ω),
3) f(x, t, 0) ∈ L2(Ω) and f(x, t, 0) ∈ C1(Ω).

Lemma 2.2 Under the conditions of Theorem 1, equation (6) has at least one
solution in BT .

Proof. If we apply the method of successive approximations, for equation
(6) where N = 1,∞, we get the following sequence

u(N+1)
n (t) =

2

π

t∫
0

π∫
0

e−
n2k

m+1(tm+1−τm+1)f

(
ξ, τ,

∞∑
n=1

u(N)
n (τ) sinnξ

)
sinnξdξdτ.

(7)
For simplicity, let’s assume the following notations:

Au(N)(ξ, τ) =
∞∑
n=1

u(N)
n (τ) sinnξ and

{
u(N)(t)

}
=
{
u
(N)
1 (t), u

(N)
2 (t), ..., u(N)

n (t), ...
}
.

Clearly we have

max
0≤τ≤T

∣∣Au(N)(ξ, τ)
∣∣ ≤ ∞∑

n=1

max
0≤τ≤T

∣∣u(N)
n (τ)

∣∣ = ∥∥u(N)(τ)
∥∥
BT

. (8)

Now we want to show that u(N)(t) ∈ BT for all N , i.e.
∞∑
n=1

max
0≤t≤T

∣∣∣u(N)
n (t)

∣∣∣ < ∞.

According to the conditions in Theorem 1, it is clear that

∥∥u(0)(t)
∥∥ =

∞∑
n=1

max
0≤t≤T

∣∣u(0)
n (t)

∣∣ = 0 < ∞.

For N = 0 in (7), we have

u(1)
n (t) =

2

π

t∫
0

π∫
0

e−
n2k

m+1(tm+1−τm+1)f
(
ξ, τ, Au(0) (ξ, τ)

)
sinnξdξdτ.

From here ∣∣u(1)
n (t)

∣∣ ≤ tmax
0≤τ≤t

∣∣∣∣∣∣ 2π
π∫

0

f (ξ, τ, 0) sinnξdξ

∣∣∣∣∣∣ .
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If the sum is taken according to n, we get

∞∑
n=1

∣∣u(1)
n (t)

∣∣ ≤ tmax
0≤τ≤t

∞∑
n=1

∣∣∣∣∣∣ 2π
π∫

0

f (ξ, τ, 0) sinnξdξ

∣∣∣∣∣∣ = tM1 (τ) .

Thus,
∥∥u(1)(t)

∥∥
BT

=
∞∑
n=1

max
0≤t≤T

∣∣∣u(1)
n (t)

∣∣∣ ≤ TM1 (τ) < ∞.

For N = 1 in (7), we have

u(2)
n (t) =

2

π

t∫
0

π∫
0

e−
n2k

m+1(tm+1−τm+1)f
(
ξ, τ, Au(1) (ξ, τ)

)
sinnξdξdτ.

By addition and subtraction

∣∣u(2)
n (t)

∣∣ ≤ tmax
0≤τ≤t

2

π

π∫
0

∣∣f (ξ, τ, Au(1) (ξ, τ)
)
− f (ξ, τ, 0)

∣∣ |sinnξ| dξ
+tmax

0≤τ≤t

2

π

π∫
0

|f (ξ, τ, 0) sinnξ| dξ

is obtained. If the sum is taken with respect to n and the Lipschitz condition
is applied, we get

∞∑
n=1

∣∣u(2)
n (t)

∣∣ ≤ tmax
0≤τ≤t

∞∑
n=1

2

π

π∫
0

∣∣f (ξ, τ, Au(1) (ξ, τ)
)
− f (ξ, τ, 0)

∣∣ |sinnξ| dξ
+tmax

0≤τ≤t

∞∑
n=1

2

π

π∫
0

|f (ξ, τ, 0) sinnξ| dξ

≤ tmax
0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ)
∣∣Au(1) (ξ, τ)

∣∣ |sinnξ| dξ + tM1 (τ)

≤ t
∥∥u(1)(t)

∥∥
BT

max
0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ) |sinnξ| dξ + tM1 (τ)

≤ t
∥∥u(1)(t)

∥∥
BT

M2 (τ) + tM1 (τ) .

Thus,
∥∥u(2)(t)

∥∥
BT

=
∞∑
n=1

max
0≤t≤T

∣∣∣u(2)
n (t)

∣∣∣ ≤ T
∥∥u(1)(t)

∥∥
BT

M2 (τ) + TM1 (τ) < ∞.
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For N = 2 in (7), we have

u(3)
n (t) =

2

π

t∫
0

π∫
0

e−
n2k

m+1(tm+1−τm+1)f
(
ξ, τ, Au(2) (ξ, τ)

)
sinnξdξdτ

By addition and subtraction

∣∣u(3)
n (t)

∣∣ ≤ tmax
0≤τ≤t

2

π

π∫
0

∣∣f (ξ, τ, Au(2) (ξ, τ)
)
− f (ξ, τ, 0)

∣∣ |sinnξ| dξ
+tmax

0≤τ≤t

2

π

π∫
0

|f (ξ, τ, 0) sinnξ| dξ.

is obtained. If the sum is taken with respect to n and the Lipschitz condition
is applied, we get

∞∑
n=1

∣∣u(3)
n (t)

∣∣ ≤ tmax
0≤τ≤t

∞∑
n=1

2

π

π∫
0

∣∣f (ξ, τ, Au(2) (ξ, τ)
)
− f (ξ, τ, 0)

∣∣ |sinnξ| dξ
+tmax

0≤τ≤t

∞∑
n=1

2

π

π∫
0

|f (ξ, τ, 0) sinnξ| dξ

≤ tmax
0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ)
∣∣Au(2) (ξ, τ)

∣∣ |sinnξ| dξ + tM1 (τ)

≤ t
∥∥u(2)(t)

∥∥
BT

max
0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ) |sinnξ| dξ + tM1 (τ)

≤ t
∥∥u(2)(t)

∥∥
BT

M2 (τ) + tM1 (τ) .

Thus,
∥∥u(3)(t)

∥∥
BT

=
∞∑
n=1

max
0≤t≤T

∣∣∣u(3)
n (t)

∣∣∣ ≤ T
∥∥u(2)(t)

∥∥
BT

M2 (τ) + TM1 (τ) < ∞.

Let’s show its truth for each N by induction:

ForN = k−1 in (7),
∥∥u(k)(t)

∥∥
BT

=
∞∑
n=1

max
0≤t≤T

∣∣∣u(k)
n (t)

∣∣∣ ≤ T
∥∥u(k−1)(t)

∥∥
BT

M2 (τ)+

TM1 (τ) < ∞ be correct.
For N = k in (7), we have

u(k+1)
n (t) =

2

π

t∫
0

π∫
0

e−
n2k

m+1(tm+1−τm+1)f
(
ξ, τ, Au(k) (ξ, τ)

)
sinnξdξdτ.
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By addition and subtraction

∣∣u(k+1)
n (t)

∣∣ ≤ tmax
0≤τ≤t

2

π

π∫
0

∣∣f (ξ, τ, Au(k) (ξ, τ)
)
− f (ξ, τ, 0)

∣∣ |sinnξ| dξ
+tmax

0≤τ≤t

2

π

π∫
0

|f (ξ, τ, 0) sinnξ| dξ

is obtained. If the sum is taken with respect to n and the Lipschitz condition
is applied, we get

∞∑
n=1

∣∣u(k+1)
n (t)

∣∣ ≤ tmax
0≤τ≤t

∞∑
n=1

2

π

π∫
0

∣∣f (ξ, τ, Au(k) (ξ, τ)
)
− f (ξ, τ, 0)

∣∣ |sinnξ| dξ
+tmax

0≤τ≤t

∞∑
n=1

2

π

π∫
0

|f (ξ, τ, 0) sinnξ| dξ

≤ tmax
0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ)
∣∣Au(k) (ξ, τ)

∣∣ |sinnξ| dξ + tM1 (τ)

≤ t
∥∥u(k)(t)

∥∥
BT

max
0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ) |sinnξ| dξ + tM1 (τ)

≤ t
∥∥u(k)(t)

∥∥
BT

M2 (τ) + tM1 (τ) .

Thus,
∥∥u(k+1)(t)

∥∥
BT

=
∞∑
n=1

max
0≤t≤T

∣∣∣u(k+1)
n (t)

∣∣∣ ≤ T
∥∥u(k)(t)

∥∥
BT

M2 (τ)+TM1 (τ) <

∞. Then u(N)(t) ∈ BT .

Now, let us show that the sequence
{
u(N)(t)

}
is uniformly convergent in BT

as N → ∞. For this, it is sufficient to show that the series

u(0)(t) +
∞∑

N=0

(
u(N+1)(t)− u(N)(t)

)
is uniformly convergent. First, we want to obtain estimates for the differences∣∣u(N+1)

n (t)− u(N)
n (t)

∣∣. It is clear that
∥∥u(1)(t)− u(0)(t)

∥∥
BT

=
∞∑
n=1

max
0≤t≤T

∣∣u(1)
n (t)− u(0)

n (t)
∣∣ = ∞∑

n=1

max
0≤t≤T

∣∣u(1)
n (t)

∣∣
≤ TM1 (τ) = AT < ∞.
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∣∣u(2)
n (t)− u(1)

n (t)
∣∣

≤ 2

π

t∫
0

∣∣∣∣e− n2k

m+1(tm+1−τm+1)
∣∣∣∣

π∫
0

∣∣f (ξ, τ, Au(1) (ξ, τ)
)
− f (ξ, τ, 0)

∣∣ |sinnξ| dξdτ
≤ tmax

0≤τ≤t

2

π

π∫
0

∣∣f (ξ, τ, Au(1) (ξ, τ)
)
− f (ξ, τ, 0)

∣∣ |sinnξ| dξ

is obtained. If the sum is taken with respect to n and the Lipschitz condition
is applied, we get

∞∑
n=1

∣∣u(2)
n (t)− u(1)

n (t)
∣∣ ≤ tmax

0≤τ≤t

∞∑
n=1

2

π

π∫
0

∣∣f (ξ, τ, Au(1) (ξ, τ)
)
− f (ξ, τ, 0)

∣∣ |sinnξ| dξ
≤ tmax

0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ)
∣∣Au(1) (ξ, τ)

∣∣ |sinnξ| dξ
≤ t

∥∥u(1)(t)
∥∥
BT

max
0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ) |sinnξ| dξ

≤ tATM2 (τ) .

Thus,
∥∥u(2)(t)− u(1)(t)

∥∥
BT

=
∞∑
n=1

max
0≤t≤T

∣∣∣u(2)
n (t)− u

(1)
n (t)

∣∣∣ ≤ TATM2 (τ).

∣∣u(3)
n (t)− u(2)

n (t)
∣∣

≤ 2

π

t∫
0

∣∣∣∣e− n2k

m+1(tm+1−τm+1)
∣∣∣∣

π∫
0

∣∣f (ξ, τ, Au(2) (ξ, τ)
)
− f

(
ξ, τ, Au(1) (ξ, τ)

)∣∣ |sinnξ| dξdτ
≤ tmax

0≤τ≤t

2

π

π∫
0

∣∣f (ξ, τ, Au(2) (ξ, τ)
)
− f

(
ξ, τ, Au(1) (ξ, τ)

)∣∣ |sinnξ| dξ

is obtained. If the sum is taken with respect to n and the Lipschitz condition
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is applied, we get

∞∑
n=1

∣∣u(3)
n (t)− u(2)

n (t)
∣∣

≤ tmax
0≤τ≤t

∞∑
n=1

2

π

π∫
0

∣∣f (ξ, τ, Au(2) (ξ, τ)
)
− f

(
ξ, τ, Au(1) (ξ, τ)

)∣∣ |sinnξ| dξ
≤ tmax

0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ)
∣∣Au(2) (ξ, τ)− Au(1) (ξ, τ)

∣∣ |sinnξ| dξ
≤ tmax

0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ)
∥∥u(2)(t)− u(1)(t)

∥∥
BT

|sinnξ| dξ

≤ tTATM2 (τ) max
0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ) |sinnξ| dξ

≤ tTATM2 (τ)M2 (τ) .

Thus,
∥∥u(3)(t)− u(2)(t)

∥∥
BT

=
∞∑
n=1

max
0≤t≤T

∣∣∣u(3)
n (t)− u

(2)
n (t)

∣∣∣ ≤ T 2ATM
2
2 (τ).

∣∣u(4)
n (t)− u(3)

n (t)
∣∣

≤ 2

π

t∫
0

∣∣∣∣e− n2k

m+1(tm+1−τm+1)
∣∣∣∣

π∫
0

∣∣f (ξ, τ, Au(3) (ξ, τ)
)
− f

(
ξ, τ, Au(2) (ξ, τ)

)∣∣ |sinnξ| dξdτ
≤ tmax

0≤τ≤t

2

π

π∫
0

∣∣f (ξ, τ, Au(3) (ξ, τ)
)
− f

(
ξ, τ, Au(2) (ξ, τ)

)∣∣ |sinnξ| dξ

is obtained. If the sum is taken with respect to n and the Lipschitz condition
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is applied, we get

∞∑
n=1

∣∣u(4)
n (t)− u(3)

n (t)
∣∣

≤ tmax
0≤τ≤t

∞∑
n=1

2

π

π∫
0

∣∣f (ξ, τ, Au(3) (ξ, τ)
)
− f

(
ξ, τ, Au(2) (ξ, τ)

)∣∣ |sinnξ| dξ
≤ tmax

0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ)
∣∣Au(3) (ξ, τ)− Au(2) (ξ, τ)

∣∣ |sinnξ| dξ
≤ tmax

0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ)
∥∥u(3)(t)− u(2)(t)

∥∥
BT

|sinnξ| dξ

≤ tT 2ATM
2
2 (τ) max

0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ) |sinnξ| dξ

≤ tT 2ATM
2
2 (τ)M2 (τ) .

Thus,
∥∥u(4)(t)− u(3)(t)

∥∥
BT

=
∞∑
n=1

max
0≤t≤T

∣∣∣u(4)
n (t)− u

(3)
n (t)

∣∣∣ ≤ T 3ATM
3
2 (τ).

Let’s show its truth for each N by induction:

For N = k − 1,
∥∥u(k)(t)− u(k−1)(t)

∥∥
BT

=
∞∑
n=1

max
0≤t≤T

∣∣∣u(k)
n (t)− u

(k−1)
n (t)

∣∣∣ ≤
T k−1ATM

k−1
2 (τ) be correct.

For N = k,

∣∣u(k+1)
n (t)− u(k)

n (t)
∣∣

≤ 2

π

t∫
0

∣∣∣∣e− n2k

m+1(tm+1−τm+1)
∣∣∣∣

π∫
0

∣∣f (ξ, τ, Au(k) (ξ, τ)
)
− f

(
ξ, τ, Au(k−1) (ξ, τ)

)∣∣ |sinnξ| dξdτ
≤ tmax

0≤τ≤t

2

π

π∫
0

∣∣f (ξ, τ, Au(k) (ξ, τ)
)
− f

(
ξ, τ, Au(k−1) (ξ, τ)

)∣∣ |sinnξ| dξ
is obtained. If the sum is taken with respect to n and the Lipschitz condition
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is applied, we get

∞∑
n=1

∣∣u(k+1)
n (t)− u(k)

n (t)
∣∣

≤ tmax
0≤τ≤t

∞∑
n=1

2

π

π∫
0

∣∣f (ξ, τ, Au(k) (ξ, τ)
)
− f

(
ξ, τ, Au(k−1) (ξ, τ)

)∣∣ |sinnξ| dξ
≤ tmax

0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ)
∣∣Au(k) (ξ, τ)− Au(k−1) (ξ, τ)

∣∣ |sinnξ| dξ
≤ tmax

0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ)
∥∥u(k)(t)− u(k−1)(t)

∥∥
BT

|sinnξ| dξ

≤ tT k−1ATM
k−1
2 (τ) max

0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ) |sinnξ| dξ

≤ tT k−1ATM
k−1
2 (τ)M2 (τ) .

Thus,
∥∥u(k+1)(t)− u(k)(t)

∥∥
BT

=
∞∑
n=1

max
0≤t≤T

∣∣∣u(k+1)
n (t)− u

(k)
n (t)

∣∣∣ ≤ T kATM
k
2 (τ).

From here it is obvious that

u(N+1)(t) = u(0)(t) +
N∑
k=0

(
u(k+1)(t)− u(k)(t)

)
≤

∞∑
k=0

T kATM
k
2 (τ) .

Under the condition TM2 (τ) < 1, the uniform convergence of the sequence{
u(N)(t)

}
in BT is obtained from the convergence of the series

∞∑
k=0

T kATM
k
2 (τ).

As a result, the series u(0)(t) +
∞∑

N=0

(
u(N+1)(t)− u(N)(t)

)
is uniformly conver-

gent.

Let lim
N→∞

u(N+1)(t) = u(t). Since the sequence
{
u(N)(t)

}
is uniformly con-

vergent, the function u(t) is continuous in BT . Let us show that the function
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u(t) satisfies the integral equation (6):

∣∣u(t)− u(N+1)(t)
∣∣

=
∞∑
n=1

∣∣un(t)− u(N+1)
n (t)

∣∣
≤

∞∑
n=1

2

π

t∫
0

∣∣∣∣e− n2k

m+1(tm+1−τm+1)
∣∣∣∣

π∫
0

∣∣f (ξ, τ, Au (ξ, τ))− f
(
ξ, τ, Au(N) (ξ, τ)

)∣∣ |sinnξ| dξdτ
≤

∞∑
n=1

tmax
0≤τ≤t

2

π

π∫
0

∣∣f (ξ, τ, Au (ξ, τ))− f
(
ξ, τ, Au(N) (ξ, τ)

)∣∣ |sinnξ| dξ
≤ tmax

0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ)
∣∣Au (ξ, τ)− Au(N) (ξ, τ)

∣∣ |sinnξ| dξ
≤ tmax

0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ)
∥∥u(t)− u(N)(t)

∥∥
BT

|sinnξ| dξ

≤ tM2 (τ)
∥∥u(t)− u(N)(t)

∥∥
BT

is obtained. If we show that lim
N→∞

∥∥u(t)− u(N)(t)
∥∥
BT

= 0, it follows that the

function u(t) satisfies the integral equation (6).

∣∣u(t)− u(N+1)(t)
∣∣ = ∞∑

n=1

∣∣un(t)− u(N+1)
n (t)

∣∣



Existence of solutions to parabolic... 43

≤
∞∑
n=1

2

π

t∫
0

∣∣∣∣e− n2k

m+1(tm+1−τm+1)
∣∣∣∣

π∫
0

∣∣f (ξ, τ, Au (ξ, τ))− f
(
ξ, τ, Au(N) (ξ, τ)

)∣∣ |sinnξ| dξdτ
≤

∞∑
n=1

tmax
0≤τ≤t

2

π

π∫
0

∣∣f (ξ, τ, Au (ξ, τ))− f
(
ξ, τ, Au(N) (ξ, τ)

)∣∣ |sinnξ| dξ
≤

∞∑
n=1

tmax
0≤τ≤t

2

π

π∫
0

∣∣f (ξ, τ, Au (ξ, τ))− f
(
ξ, τ, Au(N+1) (ξ, τ)

)∣∣ |sinnξ| dξ
+

∞∑
n=1

tmax
0≤τ≤t

2

π

π∫
0

∣∣f (ξ, τ, Au(N+1) (ξ, τ)
)
− f

(
ξ, τ, Au(N) (ξ, τ)

)∣∣ |sinnξ| dξ
≤ tmax

0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ)
∣∣Au (ξ, τ)− Au(N+1) (ξ, τ)

∣∣ |sinnξ| dξ
+tmax

0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ)
∣∣Au(N+1) (ξ, τ)− Au(N) (ξ, τ)

∣∣ |sinnξ| dξ
≤ tmax

0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ)
∥∥u(t)− u(N+1)(t)

∥∥
BT

|sinnξ| dξ

+tmax
0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ)
∥∥u(N+1)(t)− u(N)(t)

∥∥
BT

|sinnξ| dξ

≤ tM2 (τ)
∥∥u(t)− u(N+1)(t)

∥∥
BT

+ tM2 (τ)
∥∥u(N+1)(t)− u(N)(t)

∥∥
BT

is obtained. From here we get∥∥u(t)− u(N+1)(t)
∥∥
BT

≤ TM2 (τ)
∥∥u(t)− u(N+1)(t)

∥∥
BT

+TM2 (τ)
∥∥u(N+1)(t)− u(N)(t)

∥∥
BT

≤ TM2 (τ)
∥∥u(t)− u(N+1)(t)

∥∥
BT

+TN+1MN+1
2 (τ)AT .

If the condition TM2 (τ) < 1 is also taken into account, lim
N→∞

∥∥u(t)− u(N)(t)
∥∥
BT

=

0. Thus, it is shown that the function u(t) satisfies the integral equation (6).

Lemma 2.3 Under the conditions of Theorem 1, equation (6) has at most
one solution in BT .
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Proof. To show the uniqueness of the solution, let us assume that v(t) is
another solution. We want to obtain an estimate for |u(t)− v(t)|:

|u(t)− v(t)|

=
∞∑
n=1

|un(t)− vn(t)|

≤
∞∑
n=1

2

π

t∫
0

∣∣∣∣e− n2k

m+1(tm+1−τm+1)
∣∣∣∣

π∫
0

|f (ξ, τ, Au (ξ, τ))− f (ξ, τ, Av (ξ, τ))| |sinnξ| dξdτ

≤
∞∑
n=1

tmax
0≤τ≤t

2

π

π∫
0

|f (ξ, τ, Au (ξ, τ))− f (ξ, τ, Av (ξ, τ))| |sinnξ| dξ

≤ tmax
0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ) |Au (ξ, τ)− Av (ξ, τ)| |sinnξ| dξ

≤ tmax
0≤τ≤t

∞∑
n=1

2

π

π∫
0

b (ξ, τ) ∥u(t)− v(t)∥BT
|sinnξ| dξ

≤ tM2 (τ) ∥u(t)− v(t)∥BT

is obtained. From here we get

∥u(t)− v(t)∥BT
≤ TM2 (τ) ∥u(t)− v(t)∥BT

.

If the condition TM2 (τ) < 1 is also taken into account, ∥u(t)− v(t)∥BT
= 0.

Thus, u(t) = v(t) and un(t) = vn(t),
(
n = 1,∞

)
. In other words, it was shown

that the solution of the integral equation (6) is unique.

Proof of Theorem 1. From Lemma 1 and Lemma 2, equation (6) has a
unique solution. Thus, the theorem is proved.

Theorem 2.4 Under the conditions of Theorem 1, the problem (1)-(3) has a
unique weak solution represented by the uniformly convergent series of (5).

Proof. The series (5) constructed using the solution of equation (6) is
continuous since it is uniformly convergent. Let the sequence of partial sums
of the series (5) be defined as follows:

u(l)(x, t) =
l∑

n=1

un(t) sinnx.
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From Teorem 1 and lim
l→∞

u(l)(x, t) = u(x, t), lim
l→∞

f
(
x, t, u(l)(x, t)

)
= f (x, t, u(x, t)).

Let

Sl =

T∫
0

π∫
0

[(
∂v

∂t
− (−1)ktm

∂2kv

∂x2k

)
u(l) + f

(
x, t, u(l)

)
v

]
dxdt

be defined. We want to show that lim
l→∞

Sl = 0. By using partial integration

repeatedly,

Sl =

T∫
0

π∫
0

[
− ∂

∂t

(
l∑

n=1

un(t) sinnx

)
− (−1)ktm

(
l∑

n=1

un(t)(−1)kn2k sinnx

)
+f
(
x, t, u(l)

)]
vdxdt

=

T∫
0

π∫
0

[
− ∂

∂t

(
l∑

n=1

un(t) sinnx

)
− (−1)ktm

∂2k

∂x2k

(
l∑

n=1

un(t) sinnx

)
+f
(
x, t, u(l)

)]
vdxdt

=

T∫
0

π∫
0

(
− ∂

∂t
u(l) − (−1)ktm

∂2k

∂x2k
u(l) + f

(
x, t, u(l)

))
vdxdt

is obtained. From here we get

lim
l→∞

Sl =

T∫
0

π∫
0

−
(

∂

∂t
u+ (−1)ktm

∂2k

∂x2k
u− f (x, t, u)

)
vdxdt.

From equation (1), we have
lim
l→∞

Sl = 0.

Thus, the function u(x, t) =
∑∞

n=1 un(t) sinnx is a weak solution of the problem
(1)-(3). The theorem is proved.

3 Open Problem

We examined the existence and uniqueness of the initial and boundary value
problem (1)-(3). The open problem here is that are there global solutions to
(1)?
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