Int. J. Open Problems Compt. Math., Vol. 17, No. 4, December 2024 Print ISSN: 1998-6262, Online ISSN: 2079-0376 Copyright ©ICSRS Publication, 2024, www.i-csrs.org

Submanifold of a K-contact manifold admitting Zamkovoy connection

Lakshmi M. S. and H. G. Nagaraja

Department of Mathematics, Bangalore University, Jnana Bharathi Campus, Bengaluru-560056, Karnataka, India. e-mail:lakshmims1369@gmail.com, hgnraj@yahoo.com

Received 10 June 2024; Accepted 3 November 2024

Abstract

The main objective of this paper is to investigate η -Ricci solitons on anti-invariant submanifolds of a K-contact manifold, specifically with respect to Zamkovoy connection. We examine the characteristics of anti-invariant submanifold of a K-contact metric admitting Zamkovoy connection. Further, we analyse the behavior of a η -Ricci soliton on anti-invariant submanifold.

Keywords: Anti-invariant submanifold, η -Ricci soliton, Zamkovoy connection, Concircular curvature tensor, M-projective curvature tensor.

2010 Mathematics Subject Classification: 53C15, 53C25, 53C40, 53D15.

1 Introduction

In recent years, geometric flow, especially the Ricci flow, have gained significant interest as a research topic in differential geometry. low is referred to as a Ricci soliton if its evolution is determined solely by a one-parameter group of diffeomorphisms and scaling. Hamilton introduced the concept of Ricci solitons [9]. A Ricci soliton (g, V, λ) on a Riemannian manifold (\tilde{M}, g) is a generalization of Einstein metric given by [9]

$$L_V g + 2S + 2\lambda g = 0,$$

where L_V represents the Lie derivative along the vector field V on \tilde{M} , S denotes the Ricci tensor and λ is a real number. The Ricci soliton is classified as shrinking, steady, or expanding depending on whether λ is negative, zero, or positive, respectively.

In [8], Cho and Kimura, introduced the concept of η -Ricci solitons for real hypersurfaces in a non-flat complex space form. The Riemannian metric g is classified as a η -Ricci soliton if there exists a potential vector field V and constants λ , μ , satisfying the equation

$$L_V g + 2S(X, Y) + 2\lambda g(X, Y) + 2\eta \otimes \eta = 0.$$
⁽¹⁾

 η -Ricci solitons have been extensively studied by Blaga [6], Prakasha et al. [16] and other researchers.

In 2009, Zamkovoy [20] introduced the notion of Zamkovoy connection. Subsequently, this concept has been studied by Biswas and Baishya ([1], [2]), Blaga [6], Mandal and Das ([11], [12]) and many other researchers.

Yano introduced the notion of concircular curvature tensor C of type (1, 3) on Riemannian manifold for an *n*-dimensional manifold \tilde{M} as given in [18]

$$C(X,Y)Z = \tilde{R}(X,Y)Z - \frac{r}{n(n-1)} \left[g(Y,Z)X - g(X,Z)Y\right],$$

for all vector fields $X, Y, Z \in \chi(\tilde{M})$, where R is the Riemannian curvature tensor of type (1, 3) and r is the scalar curvature.

Therefore, considering C^* as the concircular curvature tensor with respect to Zamkovoy connection, for a (2n + 1)-dimensional manifold \tilde{M} , we express it as:

$$C^*(X,Y)Z = R^*(X,Y)Z - \frac{r^*}{2n(2n+1)} \left[g(Y,Z)X - g(X,Z)Y\right], \quad (2)$$

for all vector fields $X, Y, Z \in \chi(\tilde{M})$, where R^* is the Riemannian curvature tensor and r^* is the scalar curvature with respect to Zamkovoy connection.

Definition 1.1 [10] A (2n + 1)-dimensional manifold \tilde{M} is termed Ricci flat if S(X,Y) = 0, for all $X, Y, Z \in \chi(\tilde{M})$.

Definition 1.2 [12] A (2n + 1)-dimensional manifold \tilde{M} is termed concircularly flat with respect to Zamkovoy connection if $C^*(X,Y)Z = 0$, for all $X, Y, Z \in \chi(\tilde{M})$.

In 1971, Pokhariyal and Mishra [15] introduced the concept of a M-projective curvature tensor on a Riemannian manifold of dimension n. This tensor, denoted by M, is defined as follows:

$$\begin{split} M(X,Y)Z = &\tilde{R}(X,Y)Z - \frac{1}{2(n-1)} \left[S(Y,Z)X - S(X,Z)Y \right] \\ &- \frac{1}{2(n-1)} \left[g(Y,Z)QX - g(X,Z)QY \right], \end{split}$$

for all $X, Y, Z, \in \chi(\tilde{M})$, where Q is the Ricci operator. Considering M^* as the M-projective curvature tensor with respect to Zamkovoy connection and for a (2n + 1)-dimensional manifold, we get

$$M^{*}(X,Y)Z = R^{*}(X,Y)Z - \frac{1}{4n} \left[S^{*}(Y,Z)X - S^{*}(X,Z)Y\right] - \frac{1}{4n} \left[g(Y,Z)Q^{*}X - g(X,Z)Q^{*}Y\right],$$
(3)

for all $X, Y, Z, \in \chi(\tilde{M})$, where Q^* is the Ricci operator with respect to Zamkovoy connection.

Definition 1.3 [11] A (2n+1)-dimensional manifold \tilde{M} is termed M-projectively flat admitting Zamkovoy connection if $M^*(X,Y)Z = 0$, for all $X, Y, Z \in \chi(\tilde{M})$.

Let ψ be a differentiable map from a manifold N of dimension n into a manifold \tilde{M} of dimension m, respectively. If at each point u of N, the differential $(\psi_*)_u$ is injective (i.e., rank $\psi=n$), then ψ is termed an immersion of N into \tilde{M} .

If an immersion ψ is injective, meaning $\psi(u) \neq \psi(v)$ for $u \neq v$, then ψ is referred to as an imbedding of N into \tilde{M} .

If the manifolds N, M satisfy the following two conditions, then N is called a submanifold of \tilde{M} [10]

- N is a subset of \tilde{M} ,
- The inclusion map i from N into \tilde{M} is an imbedding.

A submanifold N is said to be anti-invariant if $X \in T_x N$ and $\phi X \in T_x^{\perp} N$, for all $x \in N$, where $T_x N$ and $T_x^{\perp} N$ represent the tangent space and the normal space of N. Hence, in an anti-invariant submanifold N, we have [19]

$$g(X,\phi Y) = 0, (4)$$

for all $X, Y \in \chi(TN)$.

In 1977, Yano and Kon examined anti-invariant submanifolds of Sasakian manifolds [19]. Meanwhile, Pandey and Kumar [14] investigated on anti-invariant submanifolds of almost para-contact manifolds. Additionally, Shivaprasanna et al. [17] explored Ricci-Yamabe solitons on anti-invariant submanifolds of certain indefinite almost contact manifolds. Recently, Karmakar [10] studied η -Ricci-Yamabe solitons on anti-invariant submanifolds of trans Sasakian manifold equipped with the Zamkovoy connection.

Motivated by the aforementioned studies, this paper investigates η -Ricci solitons on anti-invariant submanifolds of a K-contact manifold admitting Zamkovoy connection. Additionally, we examine η -Ricci solitons on these

submanifolds under conditions of Ricci flatness, concircular flatness, and Mprojective flatness with respect to Zamkovoy connection. Our findings reveal the nature of the η -Ricci soliton, whether it exhibits shrinking, steady, or expanding behavior. Finally, we demonstrate that an η -Ricci soliton on antiinvariant submanifold of a K-contact manifold becomes η -Einstein when the potential vector field V is pointwise collinear with ξ with respect to Zamkovoy connection.

2 Preliminaries

Let us consider (2m + 1)-dimensional almost contact metric manifold with almost contact structure (ϕ, ξ, η, g) defined by a (1, 1)-tensor field ϕ , a characteristic vector field ξ , a 1-form η and a compatible metric g satisfying the condition [3]

$$\phi^2 = -I + \eta \otimes \xi, \quad \phi(\xi) = 0, \quad \eta(\xi) = 1, \quad \eta \circ \phi = 0, \tag{5}$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \tag{6}$$

$$g(X,\phi Y) = -g(\phi X,Y), \quad g(X,\xi) = \eta(X), \tag{7}$$

for all vector fields $X, Y \in \chi(T\tilde{M})$. An almost contact metric manifold is called contact metric manifold if $d\eta(X, Y) = \Phi(X, Y) = g(X, \phi Y)$, where Φ is the fundamental 2-form of the manifold. If ξ is a Killing vector field, then the manifold \tilde{M} is called a K-contact manifold.

If \tilde{M}^{2n+1} is a K-contact manifold \tilde{M} , then the following relations hold [13]:

$$\tilde{\nabla}_X \xi = -\phi X,\tag{8}$$

$$(\tilde{\nabla}_X \phi) Y = g(X, Y) \xi - \eta(Y) X, \tag{9}$$

$$(\tilde{\nabla}_X \eta) Y = -g(\phi X, Y), \tag{10}$$

$$\tilde{R}(X,Y)\xi = \eta(Y)X - \eta(X)Y,$$
(11)

$$S(X,\xi) = 2n\eta(X), \tag{12}$$

$$QX = 2nX,\tag{13}$$

$$r = 2n(2n+1), (14)$$

for every $X, Y \in \chi(T\tilde{M})$, where $\tilde{\nabla}$ represents the Riemannian connection relative to g and \tilde{R} , S, Q and r represent the Riemannian curvature tensor of type (1, 3), Ricci tensor, Ricci operator and Ricci curvature on \tilde{M} , respectively.

For an *n*-dimensional almost contact metric manifold consisting of a (1, 1)tensor field ϕ , a vector field ξ , a 1-form η and a Riemannian matric g with the Riemannian connection $\tilde{\nabla}$, the relation for Zamkovoy connection ∇^* is given by [20]

$$\nabla_X^* Y = \tilde{\nabla}_X Y + (\tilde{\nabla}_X \eta)(Y)\xi - \eta(Y)\tilde{\nabla}_X \xi + \eta(X)\phi Y.$$
(15)

Utilizing (10) and (8) in (15), we get

$$\nabla_X^* Y = \widetilde{\nabla}_X Y - g(\phi X, Y)\xi + \eta(Y)\phi X + \eta(X)\phi Y.$$
(16)

Now, applying (4) in equation (16), we get the expression of Zamkovoy connection on an anti-invariant submanifold N of \tilde{M} as

 $\nabla_X^* Y = \tilde{\nabla}_X Y + \eta(Y)\phi X + \eta(X)\phi Y.$ (17)

Setting $Y = \xi$ in above equality and using (8), we obtain

$$\nabla_X^* \xi = 0. \tag{18}$$

In view of (9) and (17), we have

$$(\nabla_X^* \phi) Y = g(\phi X, \phi Y) \xi.$$
(19)

From (17), we derive

$$\nabla_X^* \eta) Y = 0. \tag{20}$$

Let \tilde{R} and R^* denote the curvature tensor of $\tilde{\nabla}$ and ∇^* respectively. By definition

$$R^*(X,Y)Z = \nabla_X^* \nabla_Y^* Z - \nabla_Y^* \nabla_X^* Z - \nabla_{[X,Y]}^* Z.$$
(21)

Now, making use of (17) in (21), we get the Riemannian curvature tensor R^* of an anti-invariant submanifold N of \tilde{M} with respect to Zamkovoy connection as

$$R^{*}(X,Y)Z = \tilde{R}(X,Y)Z + [g(X,Z)\xi - \eta(Z)X]\eta(Y) - [g(Y,Z)\xi - \eta(Z)Y]\eta(X).$$
(22)

On contracting equation (22), we obtain Ricci tensor S^* of anti-invariant submanifold N of a K-contact manifold \tilde{M} with respect to Zamkovoy connection of the form

$$S^{*}(Y,Z) = S(Y,Z) - g(Y,Z) - (2n-1)\eta(Y)\eta(Z).$$
(23)

From (23), we obtain

$$Q^*Y = QY - Y - (2n - 1)\eta(Y)\xi.$$
 (24)

Contracting (23) with respect to Y and Z, we get

$$r^* = r - 4n, \tag{25}$$

where r^* and r are the scalar curvatures with respect to connections ∇^* and $\tilde{\nabla}$ respectively.

Definition 2.1 A contact metric manifold \tilde{M} is said to be η -Einstein if $S(X, Y) = ag(X, Y) + b\eta(X)\eta(Y)$, where a and b are smooth functions on \tilde{M} .

3 η -Ricci soliton on anti-invariant submanifold of a K-contact manifold with respect to Zamkovoy connection

Let (g, V, λ, μ) be an η -Ricci soliton on anti-invariant submanifold N of M with respect to Zamkovoy connection. From (1), we have

$$(L_V^*g)(Y,Z) + 2S^*(Y,Z) + 2\lambda g(Y,Z) + 2\mu\eta(Y)\eta(Z) = 0.$$
 (26)

Taking $V = \xi$ in (26), we get

$$(L_{\xi}^*g)(Y,Z) + 2S^*(Y,Z) + 2\lambda g(Y,Z) + 2\mu\eta(Y)\eta(Z) = 0.$$

which implies

$$g(\nabla_Y^*\xi, Z) + g(\nabla_Z^*\xi, Y) + 2S^*(Y, Z) + 2\lambda g(Y, Z) + 2\mu \eta(Y)\eta(Z) = 0.$$

Utilizing (18) in above equation, we obtain

$$S^*(Y,Z) = -\lambda g(Y,Z) - \mu \eta(Y) \eta(Z).$$
⁽²⁷⁾

Thus, we state the following theorem

Theorem 3.1 Let (g, ξ, λ, μ) be an η -Ricci soliton on anti-invariant submanifold N of a K-contact manifold \tilde{M} with respect to Zamkovoy connection. Then N become η -Einstein with respect to Zamkovoy connection.

Now we study the η -Ricci soliton of (2n + 1)-dimensional anti-invariant submanifold N of a K-contact manifold \tilde{M} , and we also consider N to be Ricci flat with respect to Zamkovoy connection.

Let (g, V, λ, μ) be an η -Ricci soliton on the anti-invariant submanifold N of a K-contact manifold \tilde{M} . From equation (1) and for $V = \xi$, we have

$$(L_{\xi}g)(Y,Z) + 2S(Y,Z) + 2\lambda g(Y,Z) + 2\mu \eta(Y)\eta(Z) = 0.$$

Applying the property of the Lie derivative, we get

$$g(\nabla_Y \xi, Z) + g(\nabla_Z \xi, Y) + 2S(Y, Z) + 2\lambda g(Y, Z) + 2\mu \eta(Y)\eta(Z) = 0.$$

By utilizing (8) and then applying (4) in the preceding equation and rearranging terms, we derive

$$S(Y,Z) = -\lambda g(Y,Z) - \mu \eta(Y) \eta(Z).$$
⁽²⁸⁾

Setting $Z = \xi$ in (28), we obtain

$$S(Y,\xi) = -(\lambda + \mu)\eta(Y).$$
⁽²⁹⁾

Suppose N is Ricci flat with respect to Zamkovoy connection. From equation (23), we deduce

$$S(Y,Z) = g(Y,Z) + (2n-1)\eta(Y)\eta(Z).$$
(30)

Putting $Z = \xi$ in (30), we get

$$S(Y,\xi) = 2n\eta(Y). \tag{31}$$

Equating (29) and (31), we obtain

$$\lambda = -2n - \mu. \tag{32}$$

Hence from (32), we state the following theorem as

Theorem 3.2 If a (2n+1)-dimensional anti-invariant submanifold N of a Kcontact manifold \tilde{M} is Ricci flat with respect to Zamkovoy connection, then an η -Ricci soliton on N is shrinking, steady, or expanding depending on whether $-\mu < 2n, -\mu = 2n, \text{ or } -\mu > 2n, \text{ respectively.}$

Now from equation (32), we conclude that $\lambda = -2n$, when $\mu = 0$. Therefore, based on Theorem (3.2), we can state the following theorem.

Corollary 3.3 If a (2n + 1)-dimensional anti-invariant submanifold N of a K-contact manifold \tilde{M} is Ricci flat with respect to Zamkovoy connection, then an η -Ricci soliton on N reduces to a Ricci soliton, and this soliton is shrinking.

We consider an η -Ricci soliton on a (2n+1)-dimensional concircularly flat antiinvariant submanifold N of a K-contact manifold \tilde{M} with respect to Zamkovoy connection.

Suppose N is concircularly flat with respect to Zamkovoy connection. Then from (2), we obtain

$$R^*(X,Y)Z = \frac{r^*}{2n(2n+1)}(g(Y,Z)X - g(X,Z)Y)$$
(33)

Contracting (33) with respect to W, taking $X=W=e_i$, and summing over i = 1, 2, ...(2n + 1), we obtain

$$S^*(Y,Z) = \frac{r^*}{(2n+1)}g(Y,Z).$$
(34)

Making use of (23) and (25) in (34), we find

$$S(Y,Z) = \frac{r - (2n - 1)}{(2n + 1)}g(Y,Z) + (2n - 1)\eta(Y)\eta(Z).$$
(35)

substituting $Z = \xi$ in (35), we obtain

$$S(Y,\xi) = \frac{r+2n(2n-1)}{(2n+1)}\eta(Y).$$
(36)

Now, equating (29) and (36), we arrive at

$$\lambda = -\frac{r+2n(2n-1)}{(2n+1)} - \mu.$$
(37)

Based on the obtained result (37), we state the following theorem

Theorem 3.4 If a (2n+1)-dimensional anti-invariant submanifold N of a Kcontact manifold \tilde{M} is concircularly flat with respect to Zamkovoy connection, then an η -Ricci soliton on N is shrinking, steady, or expanding depending on whether $-\mu < \frac{r+2n(2n-1)}{(2n+1)}, \ -\mu = \frac{r+2n(2n-1)}{(2n+1)}, \ or \ -\mu > \frac{r+2n(2n-1)}{(2n+1)}, \ respectively.$

From equation (37), we find that $\lambda = -\frac{r+2n(2n-1)}{(2n+1)}$, when $\mu = 0$. Based on this result, we state the following corollary.

Corollary 3.5 If a (2n+1)-dimensional anti-invariant submanifold N of a Kcontact manifold \tilde{M} is concircularly flat with respect to Zamkovoy connection, then an η -Ricci soliton on N reduces to a Ricci soliton, and this soliton is shrinking.

Next, we investigate the η -Ricci soliton on (2n+1)-dimensional M-projectively flat anti-invariant submanifold N of a K-contact manifold \tilde{M} with respect to Zamkovoy connection.

Suppose N is M-projectively flat with respect to Zamkovoy connection. Then from equation (3), we obtain

$$R^{*}(X,Y)Z = \frac{1}{4n} \left[S^{*}(Y,Z)X - S^{*}(X,Z)Y \right] + \frac{1}{4n} \left[g(Y,Z)Q^{*}X - g(X,Z)Q^{*}Y \right].$$
(38)

Contracting (38) with respect to W, taking $X=W=e_i$ and summing over i = 1, 2, ..., (2n+1), we obtain

$$S^*(Y,Z) = \frac{r^*}{(2n+1)}g(Y,Z).$$
(39)

which is same as equation (34). Thus, by following the same procedure as in the previous calculation, we obtain the following results

Theorem 3.6 If a (2n + 1)-dimensional anti-invariant submanifold N of a Kenmotsu manifold \tilde{M} is M-projectively flat with respect to Zamkovoy connection, then an η -Ricci soliton on N is shrinking, steady, or expanding depending on whether $-\mu < \frac{r+2n(2n-1)}{(2n+1)}, -\mu = \frac{r+2n(2n-1)}{(2n+1)}, \text{ or } -\mu > \frac{r+2n(2n-1)}{(2n+1)}, \text{ respectively.}$

Corollary 3.7 If a (2n+1)-dimensional anti-invariant submanifold N of a Kcontact manifold \tilde{M} is M-projectively flat with respect to Zamkovoy connection, then an η -Ricci soliton on N reduces to a Ricci soliton, and this soliton is shrinking.

After thoroughly examining the results of Theorems (3.4, 3.6) and corollaries (3.5, 3.7), we arrive at the following two conclusions.

Conclusion 1. If a (2n + 1)-dimensional anti-invariant submanifold N of a Kenmotsu manifold \tilde{M} is (i) concircularly flat and (ii) M-projectively flat with respect to Zamkovoy connection, then an η -Ricci soliton on N is shrinking, steady, or expanding depending on whether $-\mu < \frac{r+2n(2n-1)}{(2n+1)}, -\mu = \frac{r+2n(2n-1)}{(2n+1)},$ or $-\mu > \frac{r+2n(2n-1)}{(2n+1)}$, respectively.

Conclusion 2. If a (2n + 1)-dimensional anti-invariant submanifold N of a K-contact manifold \tilde{M} is (i) concircularly flat and (ii) M-projectively flat with respect to Zamkovoy connection, then an η -Ricci soliton on N reduces to a Ricci soliton, and this soliton is shrinking with $\lambda = -\frac{r+2n(2n-1)}{(2n+1)}$.

Now, Let (g, V, λ, μ) be an η -Ricci soliton on anti-invariant submanifold N of \tilde{M} admitting Zamkovoy connection such that potential vector field V is pointwise collinear with structure vector field ξ i.e., $V = \alpha \xi$, where α is a function. Then equation (26) holds and using (18), we have

$$(X\alpha)\eta(Y) + (Y\alpha)\eta(X) + 2S^*(X,Y) + 2\lambda g(X,Y) + 2\mu\eta(X)\eta(Y) = 0.$$
(40)

Substituting $Y = \xi$ in (40) and employing (12) and (23), we get

$$(X\alpha) + (\xi\alpha)\eta(X) + 2(\lambda + \mu)\eta(X) = 0.$$
(41)

Again substituting $X = \xi$ into (41), we obtain

$$(\xi\alpha) = -(\lambda + \mu). \tag{42}$$

By employing (42) in (41), we arrive at

$$(X\alpha) = -(\lambda + \mu)\eta(X). \tag{43}$$

Applying exterior derivative on (43), we get

$$(\lambda + \mu)d\eta = 0. \tag{44}$$

Since $d\eta \neq 0$, from (44), we have

$$\lambda + \mu = 0 \implies \lambda = -\mu. \tag{45}$$

Using (45) in (43), we conclude

 $X\alpha = 0,$

this implies that α is constant. Then equation (40) transforms to

$$S^*(X,Y) = -\lambda g(X,Y) - \mu \eta(X)\eta(Y).$$
(46)

In view of (23), equation (46) takes the form

$$S(X,Y) = (1-\lambda)g(X,Y) + (2n-\mu-1)\eta(X)\eta(Y).$$
(47)

Hence, from (45) and (47), we state the following theorem

Theorem 3.8 If (g, ξ, λ, μ) is an η -Ricci soliton on anti-invariant submanifold N of a K-contact manifold \tilde{M} admitting Zamkovoy connection, and if V is pointwise collinear with ξ , then V is a constant multiple of ξ . Thus, (N, g)is η -Einstein and the scalars λ and μ are related by (45).

In particular, for $\mu=0$, (45) yields

$$\lambda = 0. \tag{48}$$

Thus we can state

Theorem 3.9 If an anti-invariant submanifold N of a K-contact manifold \tilde{M} admitting Zamkovoy connection has a Ricci soliton (g, ξ, λ) whose potential vector field V is pointwise collinear with ξ , then such soliton is always steady.

4 Open Problem

In this paper, we investigate the properties of η -Ricci solitons on anti-invariant submanifold of a K-contact metric admitting Zamkovoy connection. Our results elucidate whether the η -Ricci soliton exhibits shrinking, steady, or expanding behavior. Future research could extend these findings by exploring general connection and η -Ricci Yamabe solitons, potentially yielding even more intriguing results.

ACKNOWLEDGEMENTS. The authors would like to express their sincere thanks to the reviewers for their valuable comments and corrections.

References

 K.K. Baishya and A. Biswas, Study on generalized pseudo (Ricci) symmetric Sasakian manifold admitting general connection, Bull. Transilv. Univ. Braşov Ser. III, 12 (2019), 233–245.

- [2] A. Biswas and K.K. Baishya, A general connection on Sasakian manifolds and the case of almost pseudo symmetric Sasakian manifolds, Sci. Stud. Res. Ser. Math. Inform., 29 (2019), 59–72.
- [3] D.E. Blair, *Contact manifolds in Riemannian geometry*, Lecture notes in Math., Springer, Berlin, 509 (1976).
- [4] A.M. Blaga, Canonical connections on para-Kenmotsu manifolds, Novi Sad J. Math., 45 (2015), 131–142.
- [5] A.M. Blaga, η-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat, 30 (2016), 489–496.
- [6] A.M. Blaga, Geometric solitons in a D-homothetically deformed Kenmotsu manifold, Filomat, 36 (2022), 175–186.
- [7] B.Y. Chen, *Geometry of submanifolds*, Pure Appl. Math., Marcel Dekker, Inc., New York, No.22, 1973.
- [8] J.T. Cho and M. Kimura, *Ricci solitons and real hypersurfaces in a complex space form*, Tohoku Math. J., 61 (2009), 205–212.
- [9] R.S. Hamilton, *The Ricci flow on surfaces*, Contemp. Math., 71 (1988), 237–262.
- [10] P. Karmakar, η-Ricci-Yamabe solitons on anti-invariant submanifolds of trans-Sasakian manifold admitting Zamkovoy connection, Balkan J. Geom. Appl., 27 (2022), 50–65.
- [11] A. Mandal and A. Das, Study of Ricci solitons on concircularly flat Sasakian manifolds admitting Zamkovoy connection, Aligarh Bull. Math., 39 (2020), 47–61.
- [12] A. Mandal and A. Das, On M-projective curvature tensor of Sasakian manifolds admitting Zamkovoy connection, Adv. Math. Sci. J., 9 (2020), 8929–8940.
- [13] J.A. Oubiña, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), 187–193.
- [14] H.B. Pandey and A. Kumar, Anti-invariant submanifolds of almost paracontact manifolds, Indian J. Pure Appl. Math., 16 (1985), 586–590.
- [15] G.P. Pokhariyal and R.S. Mishra, Curvature tensors and their relativistic significance. II, Yokohama Math. J. 19 (1971), 97–103.

- [16] D.G. Prakasha and B.S. Hadimani, η-Ricci solitons on para-Sasakian manifolds, J. Geom. 108 (2017), 383–392.
- [17] G.S. Shivaprasanna, P.G. Angadi, G. Somashehara and P.S. Reddy, Ricci-Yamabe solitons on submanifolds of some indefinite almost contact manifolds, Adv. Math.: Sci. J. 9 (2020), 10067–10080.
- [18] K. Yano, Concircular geometry. I. Concircular transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195–200.
- [19] K. Yano and M. Kon, Anti-invariant submanifolds of Sasakian space forms I, Tohoku Math. J., 29 (1977), 9–23.
- [20] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Global Anal. Geom., 36 (2009), 37–60.