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Abstract

This note is devoted to a new special one-parameter arctangent-
power integral. For a special value of the parameter, we rely
on a result from the literature involving the Catalan constant.
The proofs are given in detail. An open problem and some
conjectures are also derived.
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1 Introduction

Integration is one of the key concepts in mathematics. New and challenging
integrals are still often encountered in modern applications. Unfortunately,
traditional methods do not always provide closed-form solutions, and the large
panel of existing integrals sometimes does not contain the desired ones. It is
therefore important to determine the values of new integrals to improve our
understanding of complex mathematical systems, beyond the numerical or ap-
proximation techniques commonly used by software (and somewhat imprecise).
There is therefore a need for continued research in this area. The following
recent references support this claim in an elegant way: [3], [4], [5] and [6].

In particular, there is a long list of integrals of the arctangent-power type
in the literature. Most of them are presented in two full sections in [2] (see
[2, Sections 4.53 and 4.54]). Nevertheless, there is still room to find new such
integrals. In this note, we highlight a new one that depends on an adjustable
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parameter, which is not so common in this area. To be more precise, we will
focus on the following integral:∫ 1

0

1

1 + θx2
arctan

[
1− x(2 + θx)

1 + x(θ + 1− x)

]
dx, (1)

with θ ≥ −1. Combining specific integral techniques and some properties of
the arctangent function, we show that for θ > −1 it is equal to 0. We also find
that the special case θ = −1 corresponds to a known case in the literature,
with a more complicated value depending on the Catalan constant. All these
aspects are proved and discussed in detail in Section 2. An open problem
and some conjectures are formulated in Section 3 and a conclusion is given in
Section 4.

2 Results

2.1 Main results

The proposition below is an intermediate result to the proof of our main the-
orem. It is mainly based on a thorough change of variables.

Proposition 2.1 For any θ > −1, we have∫ 1

0

1

1 + θx2
arctan

(
1− x
1 + θx

)
dx =

∫ 1

0

1

1 + θx2
arctan(x)dx.

Proof of Proposition 2.1. We make the following change of variables: x =
(1− y)/(1 + θy), in such a way that

1− x
1 + θx

=
1− (1− y)/(1 + θy)

1 + θ(1− y)/(1 + θy)
=

(1 + θy)− (1− y)

1 + θy + θ(1− y)
=

(θ + 1)y

θ + 1
= y,

dx =
−(1 + θy)− θ(1− y)

(1 + θy)2
dy = − θ + 1

(1 + θy)2
dy,

noticing that x = 0 is equivalent to y = 1, x = 1 is equivalent to y = 0, and

(1 + θy)2 + θ(1− y)2 = 1 + 2θy + θ2y2 + θ − 2θy + θy2 = (θ + 1)(1 + θy2).
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We thus obtain∫ 1

0

1

1 + θx2
arctan

(
1− x
1 + θx

)
dx

=

∫ 0

1

1

1 + θ(1− y)2/(1 + θy)2
arctan(y)

[
− θ + 1

(1 + θy)2
dy

]
= (θ + 1)

∫ 1

0

1

(1 + θy)2 + θ(1− y)2
arctan(y)dy

=

∫ 1

0

1

1 + θy2
arctan(y)dy.

By standardizing the notation, we obtain the desired integral result. The proof
of Proposition 2.1 is concluded. �

Based on this proposition, the following theorem is derived. It gives the
exact value of the integral in Equation (1) for θ > −1.

Theorem 2.2 For any θ > −1, we have∫ 1

0

1

1 + θx2
arctan

[
1− x(2 + θx)

1 + x(θ + 1− x)

]
dx = 0.

Proof of Theorem 2.2. The difference of the two integrals in Proposition
2.1 gives∫ 1

0

1

1 + θx2
arctan

(
1− x
1 + θx

)
dx−

∫ 1

0

1

1 + θx2
arctan(x)dx = 0,

which can also be written as∫ 1

0

1

1 + θx2

[
arctan

(
1− x
1 + θx

)
− arctan(x)

]
dx = 0. (2)

We now recall that, for any variables u and v such that uv > −1, the following
arctangent summation holds:

arctan(u)− arctan(v) = arctan

(
u− v
1 + uv

)
. (3)

Notice that, for any θ > −1 and x ∈ (0, 1), if we set u = (1− x)/(1 + θx) and
v = x, we have

uv = x
1− x
1 + θx

≥ x(1− x)

min(1, 1 + θ)
≥ 0 > −1.
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It follows from Equations (2) and (3) under this configuration that∫ 1

0

1

1 + θx2
arctan

[
(1− x)/(1 + θx)− x
1 + x(1− x)/(1 + θx)

]
dx = 0,

which can also be written as follows, after some basic manipulations for the
ratio term into the arctangent function:∫ 1

0

1

1 + θx2
arctan

[
1− x(2 + θx)

1 + x(θ + 1− x)

]
dx = 0.

This ends the proof of Theorem 2.2. �

To the best of our knowledge, this one-parameter arctangent-power integral
result is new in the literature, as claimed in the introduction.

The special case θ = −1 requires different techniques. More specifically,
we have∫ 1

0

1

1− x2
arctan

[
1− x(2− x)

1 + x(−1 + 1− x)

]
dx =

∫ 1

0

1

1− x2
arctan

[
(1− x)2

1− x2

]
dx

=

∫ 1

0

1

1− x2
arctan

(
1− x
1 + x

)
dx.

This special integral already exists in the literature; we have identified it as
a part of an existing proof, in [1, Part of the proof of (3), page 9]. Based on
this, we have ∫ 1

0

1

1− x2
arctan

(
1− x
1 + x

)
dx =

1

2
G,

where G denotes the famous Catalan constant defined by

G =
+∞∑
n=0

(−1)n

(2n+ 1)2
≈ 0.915965594 . . .

In a sense, Theorem 2.2 provides the opposite case, i.e., with θ > −1, with a
surprisingly uniform value of 0.

2.2 Complements

We end this section with a general integral formula. It is related to Proposition
2.1 and Theorem 2.2, using an arbitrary function.

Proposition 2.3 For any θ > −1 and any function f : R 7→ R, we have∫ 1

0

1

1 + θx2

[
f

(
1− x
1 + θx

)
− f(x)

]
dx = 0,

provided that the integral exists.
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Proof of Proposition 2.3. If we follow line by line the proof of Proposition
2.1, and simply replace arctan(x) by f(x), we get∫ 1

0

1

1 + θx2
f

(
1− x
1 + θx

)
dx =

∫ 1

0

1

1 + θx2
f(x)dx.

This imples that∫ 1

0

1

1 + θx2
f

(
1− x
1 + θx

)
dx−

∫ 1

0

1

1 + θx2
f(x)dx = 0

and ∫ 1

0

1

1 + θx2

[
f

(
1− x
1 + θx

)
− f(x)

]
dx = 0.

This ends the proof of Proposition 2.3. �

Some basic examples of Proposition 2.3 are now presented.

• If we take f(x) = arctan(x) in Proposition 2.3, we get Proposition 2.1.

• We can also consider f(x) = log(x). For any θ > −1, we then have∫ 1

0

1

1 + θx2
log

[
1− x

x(1 + θx)

]
dx

=

∫ 1

0

1

1 + θx2

[
log

(
1− x
1 + θx

)
− log(x)

]
dx = 0.

This integral is not given in [2]. Note that, for the special case θ = −1,
we can prove that it is still equal to 0.

• Another simple example comes from the choice of f(x) = x. For any
θ > −1, we have ∫ 1

0

1− 2x− θx2

(1 + θx2)(1 + θx)
dx

=

∫ 1

0

1

1 + θx2

(
1− x
1 + θx

− x
)
dx = 0.

Note that, for the special case θ = −1, simplifications and a direct prim-
itive calculation give∫ 1

0

1− 2x+ x2

(1− x2)(1− x)
dx =

∫ 1

0

1

1 + x
dx = log(2).
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• Trigonometric integral types can be considered too. Selecting f(x) =
sin(x) and using the formula sin(u) − sin(v) = 2 sin[(u − v)/2] cos[(u +
v)/2], we get∫ 1

0

1

1 + θx2
sin

(
1− 2x− θx2

1 + θx

)
cos

(
1 + θx2

1 + θx

)
dx

=
1

2

∫ 1

0

1

1 + θx2

[
sin

(
1− x
1 + θx

)
− sin(x)

]
dx = 0.

• Similarly, selecting f(x) = cos(x) and using the formula cos(u)−cos(v) =
−2 sin[(u− v)/2] sin[(u+ v)/2], we get∫ 1

0

1

1 + θx2
sin

(
1− 2x− θx2

1 + θx

)
sin

(
1 + θx2

1 + θx

)
dx

= −1

2

∫ 1

0

1

1 + θx2

[
cos

(
1− x
1 + θx

)
− cos(x)

]
dx = 0.

Many more examples can be given on the basis of Proposition 2.3.
A direct consequence of this proposition, which also justifies the presence

of the parameter α, is the following result: assuming the Leibniz integral rule,
for any positive integer m, we have∫ 1

0

∂m

∂θm

{
1

1 + θx2

[
f

(
1− x
1 + θx

)
− f(x)

]}
dx

∂m

∂θm

{∫ 1

0

1

1 + θx2

[
f

(
1− x
1 + θx

)
− f(x)

]
dx

}
=

∂m

∂θm
0 = 0.

This opens up the construction of a wide range of new integrals defined on the
interval (0, 1) and equal to 0.

3 An open problem and conjectures

3.1 An open problem

The following open problem, formulated as a question, comes from Theorem
2.2: What is the value of the following improper integral:∫ +∞

1

1

1 + θx2
arctan

[
1− x(2 + θx)

1 + x(θ + 1− x)

]
dx?

(The main change is in the integration interval considered). No solution is
actually found. Note that, given the integral in Theorem 2.2 and the Chasles
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relation, the challenging integral can also be expressed as follows, with the
same theoretical value:∫ +∞

0

1

1 + θx2
arctan

[
1− x(2 + θx)

1 + x(θ + 1− x)

]
dx.

3.2 Conjectures

During our complementary research, the following conjectures also appear: For
any θ > −1 and any positive integers k and `, we have

∫ 1

0

1

1 + θx2

[
sin

(
1− 2x− θx2

1 + θx

)]2k+1 [
tan

(
1 + θx2

1 + θx

)]`
dx = 0,

∫ 1

0

1

1 + θx2

[
sin

(
1− 2x− θx2

1 + θx

)]2k+1 [
cotan

(
1 + θx2

1 + θx

)]`
dx = 0,

∫ 1

0

1

1 + θx2

[
tan

(
1− 2x− θx2

1 + θx

)]2k+1 [
tan

(
1 + θx2

1 + θx

)]2`+1

dx = 0

and ∫ 1

0

1

1 + θx2

[
tan

(
1− 2x− θx2

1 + θx

)]2k+1 [
cotan

(
1 + θx2

1 + θx

)]`
dx = 0.

The rigorous proofs of these results have yet to be given. Note that we also
conjecture that the above integrals are still valid if we replace the trigonometric
functions involved by their hyperbolic analogues, i.e., sinh instead of sin, tanh
instead of tan, and cotanh instead of cotan.

4 Conclusion

In this note, we have given the exact value of a new special one-parameter
arctangent-power integral not presented in [2]. The value obtained is 0, except
for a special value of the parameter involved. The proof is based on a thorough
change of variables and the use of the summation property of the arctangent
function. An open problem derived from the main theorem is given, which
poses a challenging calculation of a derived improper integral.



8 C. Chesneau

References

[1] D.M. Bradley, Representations of Cata-
lan’s constant, CiteSeerX: 10.1.1.26.1879 (2001)
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.1879

[2] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products,
7th Edition, Academic Press, (2007).

[3] R. Reynolds and A. Stauffer, A definite integral involving the logarithmic
function in terms of the Lerch function, Mathematics, 7 (2019), 1-5.

[4] R. Reynolds and A. Stauffer, Definite integral of arctangent and polylog-
arithmic functions expressed as a series, Mathematics, 7 (2019), 1-7.

[5] R. Reynolds and A. Stauffer, Derivation of logarithmic and logarithmic
hyperbolic tangent integrals expressed in terms of special functions, Math-
ematics, 8 (2020), 1-6.

[6] R. Reynolds and A. Stauffer, A quadruple definite integral expressed in
terms of the Lerch function, Symmetry, 13 (2021), 1-8.


