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Abstract

In this paper, with the help of the notion of multiplicity, we
study the uniqueness of differential polynomials that share two val-
ues and obtain some results that improve the results of Wang and
Gao [8], Yang and Hau [11], and Fang and Qiu [2]. We also solve
an open problem posed by Harina P. Waghamore and Ramya Ma-
ligi [9].
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1 Introduction and Main Results

Throughout this note, a meromorphic function means meromorphic in the open
complex plane C. We shall use the standard notations of value distribution
theory of meromorphic functions such as T (r, f), m(r, f), N(r, f), N(r, f),
S(r, f) and so on that can be found, for instance, in [3]. Let f and g be non-
constant meromorphic functions, a ∈ C. We say that f and g share the value
a CM (Counting multiplicities) if f − a and g − a have the same zeros with

the same multiplicities. Let k be a positive integer, we denote by Nk)

(
r, 1

f−a

)
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the counting function of the roots of f − a with multiplicity ≤ k and by

N(k+1

(
r, 1

f−a

)
the counting function of the roots of f − a with multiplicities

> k, where each a point is counted according to its multiplicity.
Let S be a set of distinct elements of C∪{∞} and Ef (S) = ∪a∈S{z : f = a},

where each zero is counted according to its multiplicity. If we do not count the
multiplicity, the set ∪a∈S{z : f = a} is denoted by Ef (S). If Ef (S) = Eg(S),
we say that f and g share the set S CM, and if Ef (S) = Eg(S), we say that
f and g share the set S IM.

In order to validate our results, we require the following definitions and
notations:

Definition 1.1 [5] Let k be a non-negative integer, or infinitely. For a ∈
C ∪ {∞}, we denote by Ek(a; f) the set of all a-points of f , where an a-point
of multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek(a; f) = Ek(a; g), we say that f and g share the value a with weight k.

The definition implies that if f and g share a value a with weight k, then
z0 is a zero of f − a with multiplicity m(≤ k) and z0 is a zero of f − a with
multiplicity m(> k) if and only if it is a zero of g−a with multiplicity n(> k),
where m is not necessarily equal to n.

We write that f and g share (a, k) to mean that f and g share a value a
with weight k. Clearly, if f and g share (a, k), then f and g share (a, p) for
all integers p, 0 ≤ p < k. Also, we note that f and g share a value of a IM or
CM if and only if f and g share (a, 0) or (a,∞), respectively.

In 1997, C. C. Yang and X. H. Hua [11] investigated meromorphic functions
sharing one value in response to Hayman’s famous question [4].
Theorem A. Let f(z) and g(z) be two non-constant meromorphic functions,
and let n ≥ 11 be a positive integer. If fn(z)f ′(z) and gn(z)g′(z) share 1 CM,
then either f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants

satisfying (c1c2)
n+1c2 = 1 or f(z) ≡ tg(z) for a constant such that tn+1 = 1.

In 2002, Fang and Qiu [2] improved Theorem A by obtaining the following
result:
Theorem B. Let f(z) and g(z) be two non-constant meromorphic (entire)
functions, and let n ≥ 11 and (n ≥ 6) be positive integers. If fn(z)f ′(z) and
gn(z)g′(z) share z CM, then either f(z) = c1e

cz2 , g(z) = c2e
−cz2 , where c1, c2

and c are three constants satisfying 4(c1c2)
n+1c2 = −1 or f(z) ≡ tg(z) for a

constant such that tn+1 = 1.
Wang and Gao [8] evolved the above conclusions for transcendental mero-

morphic functions with a small functions. They proved the following:
Theorem C. Let f(z) and g(z) be two transcendental meromorphic functions,
and let a(z)(6≡ 0) be a common small function with respect to them and n ≥ 11
be a positive integer. If fn(z)f ′(z) and gn(z)g′(z) share a(z) CM, then either
fn(z)f ′(z)gn(z)g′(z) ≡ a2(z) or f(z) ≡ tg(z) for a constant such that tn+1 =1.
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In 2020, Harina P. Waghamore and Ramya Maligi [9] improved and ex-
panded Theorems A, B, and C by establishing the following:
Theorem D. Let f(z) and g(z) be two transcendental meromorphic functions
and let n ≥ k + 8 be a positive integer. If fnf (k) and gng(k) share (1, 2), f(z)
and g(z) share (∞,∞), then one of the following three cases holds:

1. f(z) ≡ tg(z) for a constant t such that tn+1 = 1,

2. fnf (k) = gng(k), if f
g

is not a constant:

3. f = c3e
dz and g = c4e

−dz, where c3, c4 and d are constants such that
(−1)k(c3c4)

n+1d2k = 1.

Theorem E. Let f(z) and g(z) be two transcendental meromorphic functions
and let n ≥ k + 9 be a positive integer. If fnf (k) and gng(k) share (1, 2), f(z)
and g(z) share (∞, 0), then the conclusion of Theorem D holds.
Theorem F. Let f(z) and g(z) be two transcendental meromorphic functions
and let n ≥ k + 8 be a positive integer. If f(z) and g(z) share (∞,∞) and
E3)(1, f

nf (k)) = E3)(1, g
nf (k)), then the conclusion of Theorem D holds.

Theorem G. Let f(z) and g(z) be two transcendental meromorphic functions
and let n ≥ k + 9 be a positive integer. If f(z) and g(z) share (∞, 0) and
E3)(1, f

nf (k)) = E3)(1, g
ng(k)), then the conclusion of Theorem D holds.

Remark 1.2 For S1 = {1, w, ..., wn−1} and S2 = {∞}, the authors also
proved the following equivalent forms:

Theorem H. Let S1, S2 be given as above. Suppose f(z) and g(z) be two
transcendental meromorphic functions such that

Ef(z)(S1, 2) = Eg(z)(S1, 2), Ef(z)(S2,∞) = Eg(z)(S2,∞).
If n ≥ k + 8, then the conclusion of Theorem D holds.
Theorem I. Let S1, S2 be given as above. Suppose f(z) and g(z) be two
transcendental meromorphic functions such that

Ef(z)(S1, 2) = Eg(z)(S1, 2), Ef(z)(S2, 0) = Eg(z)(S2, 0).
If n ≥ k + 9, then the conclusion of Theorem D holds.
Theorem J. Let S1, S2 be given as above. Suppose f(z) and g(z) be two
transcendental meromorphic functions such that

E3)(S1, f(z)) = E3)(S1, g(z)), Ef(z)(S2,∞) = Eg(z)(S2,∞).
If n ≥ k + 8, then the conclusion of Theorem D holds.
Theorem K. Let S1, S2 be given as above. Suppose f(z) and g(z) be two
transcendental meromorphic functions such that

E3)(S1, f(z)) = E3)(S1, g(z)), Ef(z)(S2, 0) = Eg(z)(S2, 0).
If n ≥ k + 9, then the conclusion of Theorem D holds.

In the same paper, Harina P. Waghamore and Ramya Maligi [9] posed the
following open problems.
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Open problem. Can the lower bound of n be further reduced in Theorem
D-K to get the same conclusion?

We are now recalling the definition that inspired us to compose this article.

Definition 1.3 [6] Let n0j, n1j, · · · , nkj be non-negative integers. The ex-
pression,

Mj[f ] = (f)n0j(f (1))n1j · · · (f (k))nkj ,

is called a differential monomial generated by f of degree γMj
=
∑k

i=0 nij and

weight ΓMj
=
∑k

i=0(i+ 1)nij. Then the expression

P [f ] =
l∑

j=1

ajMj[f ], (1.1)

where T (r, aj) = S(r, f) for j = 1, 2, ..., l is called the differential polyno-
mial generated by f of upper degree γp = max1≤j≤l{γMj

}, lower degree γ
p

=

min1≤j≤l{γMj
}, and weight ΓP = max1≤j≤l{ΓMj

} and the order k (where k is
the highest order of the derivative of f in P [f ]).

Let σ denote max1≤j≤l{ΓMj
− γMj

}, i.e.,

σ = max1≤j≤l

k∑
i=0

[(i+ 1)− 1]nij

= max1≤j≤l(n1j + 2n2j + . . .+ knkj).

After studying certain articles related to the above definition, it is typical
to ask the following question:
Question. What will be the conclusion if fnf (k) is replaced by fn(f −
1)mP [f ](m ≥ 2)(resp. gn(g − 1)mP [g]) in Theorem D-K?

Using the concept of multiplicity, we intend to determine the possible so-
lutions to the above questions. We demonstrated the following results, which
are the main results of this paper:

Theorem 1.4 Let f(z) and g(z) be two transcendental meromorphic func-
tions with zeros and poles of multiplicities at least s, where s is a positive
integer. Let (n−m− 3γp) s > 3σ + 6 be a positive integer. If fn(z)(f −
1)m(z)P [f(z)] and gn(z)(g − 1)m(z)P [g(z)] share (1, 2), f(z) and g(z) share
(∞,∞), then one of the following conclusion holds.

1. f = tg, for a constant t such that td = 1, where d = gcd{n + 1, n +
2, . . . , n+m+ 1− i, . . . , n+m+ 1}.

2. f and g satisifying the algebraic equation R(f, g) = 0, where

R(ω1, ω2) = ωn1 (ω1 − 1)mP [ω1]− ωn2 (ω2 − 1)mP [ω2].



Uniqueness of Differential Polynomials... 35

3. (fn(f − 1)mP [f ]) . (gn(g − 1)mP [g]) ≡ 1.

Theorem 1.5 Let f(z) and g(z) be two transcendental meromorphic func-
tions with zeros and poles of multiplicities at least s, where s is a positive
integer. Let (n−m− 3γp) s > 3σ + 7 be a positive integer. If fn(z)(f −
1)m(z)P [f(z)] and gn(z)(g − 1)m(z)P [g(z)] share (1, 2), f(z) and g(z) share
(∞, 0), then the conclusion of Theorem 1.4 holds.

Theorem 1.6 Let f(z) and g(z) be two transcendental meromorphic func-
tions with zeros and poles of multiplicities at least s, where s is a positive inte-
ger. Let (n−m− 3γp) s > 3σ+ 6 be a positive integer. If f(z) and g(z) share
(∞,∞) and E3)(1, f

n(z)(f−1)m(z)P [f(z)]) = E3)(1, g
n(z)(g−1)m(z)P [g(z)]),

then the conclusion of Theorem 1.4 holds.

Theorem 1.7 Let f(z) and g(z) be two transcendental meromorphic func-
tions with zeros and poles of multiplicities at least s, where s is a positive inte-
ger. Let (n−m− 3γp) s > 3σ+ 7 be a positive integer. If f(z) and g(z) share
(∞, 0) and E3)(1, f

n(z)(f − 1)m(z)P [f(z)]) = E3)(1, g
n(z)(g− 1)m(z)P [g(z)]),

then the conclusion of Theorem 1.4 holds.

From Remark 1.2, we can get the following equivalent forms.

Theorem 1.8 Let S1, S2 be given in Remark 1.2. Suppose f(z) and g(z) be
two transcendental meromorphic functions with zeros and poles of multiplicities
at least s, where s is a positive integer such that

Ef(z)(S1, 2) = Eg(z)(S1, 2), Ef(z)(S2,∞) = Eg(z)(S2,∞).
If (n−m− 3γp) s > 3σ + 6, then the conclusion of Theorem 1.4 holds.

Theorem 1.9 Let S1, S2 be given in Remark 1.2. Suppose f(z) and g(z) be
two transcendental meromorphic functions with zeros and poles of multiplicities
at least s, where s is a positive integer such that

Ef(z)(S1, 2) = Eg(z)(S1, 2), Ef(z)(S2, 0) = Eg(z)(S2, 0).
If (n−m− 3γp) s > 3σ + 7, then the conclusion of Theorem 1.4 holds.

Theorem 1.10 Let S1, S2 be given in Remark 1.2. Suppose f(z) and g(z)
be two transcendental meromorphic functions with zeros and poles of multiplic-
ities at least s, where s is a positive integer such that

E3)(S1, f(z)) = E3)(S1, g(z)), Ef(z)(S2,∞) = Eg(z)(S2,∞).
If (n−m− 3γp) s > 3σ + 6, then the conclusion of Theorem 1.4 holds.

Theorem 1.11 Let S1, S2 be given in Remark 1.2. Suppose f(z) and g(z)
be two transcendental meromorphic functions with zeros and poles of multiplic-
ities at least s, where s is a positive integer such that

E3)(S1, f(z)) = E3)(S1, g(z)), Ef(z)(S2, 0) = Eg(z)(S2, 0).
If (n−m− 3γp) s > 3σ + 7, then the conclusion of Theorem 1.4 holds.
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Remark 1.12 If suppose P [f ] = f (k), then we get,

(γp = γM1 = 1) , (Γp = ΓM1 = (k + 1)) , (σ = ΓM1 − γM1 = k)

and in Theorems 1.4, 1.6, 1.8, and 1.10, giving specific values for s,m, and
k in the condition (n−m− 3γp) s > 3σ + 6, we get the following interesting
cases:

1. If s = 1 and m = 0, then the results extend Theorems D, F, H, and J.

2. If s ≥ 1, m = 0, and k = 1 in Theorems 1.4-1.11, generalize and improve
Theorems A-K.

Remark 1.13 If suppose P [f ] = f (k), then we get,

(γp = γM1 = 1) , (Γp = ΓM1 = (k + 1)) , (σ = ΓM1 − γM1 = k)

and in Theorems 1.5, 1.7, 1.9, and 1.11, giving specific values for s,m, and k
in the condition (n−m− 3γp) s > 3σ + 7, we get following interesting cases.

1. If s = 1 and m = 0, then the results extend Theorems E, G, I, and K.

2. If s ≥ 1, m = 0 and k = 1 in Theorems 1.4-1.11, generalize and improve
Theorems A-K.

2 Some Preliminary Lemmas

In order to prove our results, we need the following lemmas.
Let F and G be two non-constant meromorphic functions defined in C. We

define the function H as,

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
.

Lemma 2.1 [10] Let f be a non-constant meromorphic function and let
a1, a2, a3, ...., an be finite complex numbers, an 6= 0. Then T (r, anf

n + .... +
a2f

2 + a1f + a0) = nT (r, f) + S(r, f).

Lemma 2.2 [12] Let f(z) be a non-constant meromorphic function and
P [f ] be a differential polynomial if f . Then

m

(
r,
P [f ]

fγp

)
≤
(
γp − γp

)
m
(
r,

1

f

)
+ S(r, f),

m
(
r,
P [f ]

f
γ
p

)
≤
(
γp − γp

)
m
(
r, f
)

+ S(r, f),

N

(
r,
P [f ]

fγp

)
≤
(
γp − γp

)
N
(
r,

1

f

)
+ σ

[
N(r, f) +N(r,

1

f
)

]
+ S(r, f),

N (r, P [f ]) ≤ γpN(r, f) + σN(r, f) + S(r, f),

T (r, P [f ]) ≤ γpT (r, f) + σN(r, f) + S(r, f),
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where, σ = max{n1j + 2n2j + 3n3j + · · ·+ knkj; 1 ≤ j ≤ l}.

Lemma 2.3 [1] Let F , G be two non-constant meromorphic functions. If
F , G share (1, 2) and (∞, k), where 0 ≤ k ≤ ∞. If H 6≡ 0, then

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N(r, F ) +N(r,G) +N∗(r,∞;F,G)

+ S(r, F ) + S(r,G),

where N̄∗(r,∞;F,G) denotes the reduced counting function of those a-points
of F whose multiplicities differ from the multiplicities of the corresponding
a-points of G.

Lemma 2.4 [1] Let F , G be two non-constant meromorphic functions. If
F , G share (∞, k) and E3)(1, F ) = E3)(1, G), where 0 ≤ k ≤ ∞. If H 6≡ 0,
then

T (r, F ) + T (r,G) ≤ 2N2

(
r,

1

F

)
+ 2N2

(
r,

1

G

)
+ 2N(r, F ) + 2N(r,G)

+ 2N∗(r,∞;F,G) + S(r, F ) + S(r,G).

where N̄∗(r,∞;F,G) denotes the reduced counting function of those a-points
of F whose multiplicities differ from the multiplicities of the corresponding
a-points of G.

3 Proof of the Main Results

Proof of Theorem 1.4. Let F = fn(f − 1)mP [f ] and G = gn(g − 1)mP [g].
Then F and G share (1, 2) and (∞,∞). Let H be defined as above. Suppose
that H 6≡ 0. From Lemma 2.3, we have

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N(r, F ) +N(r,G) +N∗(r,∞;F,G)

+ S(r, F ) + S(r,G). (3.1)

It obvious that

N∗(r,∞;F,G) = 0

We deduce from Lemmas 2.1, 2.2, and (3.1) that

T (r, F ) ≤ 2N
(
r,

1

f

)
+mN

(
r,

1

f

)
+N

(
r,

1

P [f ]

)
+N(r, f) + 2N

(
r,

1

g

)
+mN

(
r,

1

g

)
+N

(
r,

1

P [g]

)
+N(r, g) + S(r, f) + S(r, g)

≤
(
γp +

σ

s
+m+

3

s

)
{T (r, f) + T (r, g)}+ S(r, f) + S(r, g). (3.2)
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Obviously,

T (r, F ) = T
(
r, fn(f − 1)mP [f ]

)
+ S(r, f).

And

(n+m)T (r, f) = T (r, fn(f − 1)m) + S(r, f)

= T

(
r,
fn(f − 1)mP [f ]

P [f ]

)
+ S(r, f)

≤ T (r, F ) + T (r, P [f ]) + S(r, f)

≤ T (r, F ) +
(
γp +

σ

s

)
T (r, f) + S(r, f),

which implies that(
n+m− γp −

σ

s

)
T (r, f) ≤ T (r, F ) + S(r, f). (3.3)

Similarly, we can write for g also.
Now, from (3.2) and (3.3), we get(

n+m− γp −
σ

s

)
T (r, f) ≤

(
γp +

σ

s
+m+

3

s

)
{T (r, f) + T (r, g)}

+ S(r, f) + S(r, g). (3.4)

Similarly,(
n+m− γp −

σ

s

)
T (r, g) ≤

(
γp +

σ

s
+m+

3

s

)
{T (r, f) + T (r, g)}

+ S(r, f) + S(r, g). (3.5)

Adding (3.4) and (3.5), we get(
n−m− 6

s
− 3γp −

3σ

s

)
{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

which contradicts the condition (n−m− 3γp) s > 3σ + 6. Therefore H ≡ 0.
By integration, we get

1

F − 1
=

A

G− 1
+B, (3.6)

where A 6= 0 and B are constants. From (3.6), we have

G =
(B − A)F + (A−B − 1)

BF −B − 1
. (3.7)
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Let us discuss the following three cases.
Case 1. Suppose that B 6= 0,−1. From (3.7), we have

N

(
r,

1

F − B+1
B

)
= N(r,G). (3.8)

From Nevanlinna’s Fundamental Theorem -II and Lemma 2.2, we have

T (r, F ) ≤ N
(
r, F

)
+N

(
r,

1

F

)
+N

(
r,

1

F − B+1
B

)
+ S(r, F )

= N(r, F ) +N
(
r,

1

F

)
+N(r,G) + S(r, F ) + S(r,G)

≤ 2N

(
r,

1

f

)
+N

(
r,

1

P [f ]

)
+N(r, f) +N(r, g) + S(r, f) + S(r, g)

≤ 2N

(
r,

1

f

)
+N

(
r,

1

P [f ]

)
+N(r, f) +N(r, g) + S(r, f) + S(r, g)

≤
(
γp +

3 + σ

s

)
T (r, f) +

1

s
T (r, g) + S(r, f) + S(r, g). (3.9)

Then substituting (3.9) in (3.3), we get(
n+m− γp −

σ

s

)
T (r, f) ≤

(
γp +

3 + σ

s

)
T (r, f) +

1

s
T (r, g)

+ S(r, f) + S(r, g). (3.10)

Similarly, we can get(
n+m− γp −

σ

s

)
T (r, g) ≤

(
γp +

3 + σ

s

)
T (r, g) +

1

s
T (r, f)

+ S(r, f) + S(r, g). (3.11)

Adding (3.10) and (3.11), we get(
n+m− 2γp −

4− 2σ

s

)
{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

which contradicts the condition (n−m− 3γp) s > 3σ + 6.
Case 2. Suppose that B = 0. From (3.8), we have

G = AF − (A− 1). (3.12)

If A 6= 1, from (3.12), we obtain

N

(
r,

1

F − A−1
A

)
= N

(
r,

1

G

)
. (3.13)
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By proceeding as in the proof of Case 1, we obtain a contradiction. Thus
A = 1. From (3.13) we have F = G, that is

fn(z)(f − 1)m(z)P [f ] = gn(z)(g − 1)m(z)P [g]. (3.14)

Let h = f
g
. If h is a constant, then from (3.14) we write,

fnP [f ]
m∑
i=0

(−1)i
(

m

m− i

)
fm−i = gnP [g]

m∑
i=0

(−1)i
(

m

m− i

)
gm−i. (3.15)

Now, substituting f = gh in (3.15), we get

m∑
i=0

(−1)i
(

m

m− i

)
gm−i

[
hn+m−i+1 − 1

]
≡ 0,

which implies that hd = 1, where d = gcd{n + 1, n + 2, . . . , n + m + 1 −
i, . . . , n + m + 1}. Thus f = tg for a constant t such that td = 1, where
d = gcd{n+ 1, n+ 2, . . . , n+m+ 1− i, . . . , n+m+ 1}.

suppose that h is not a constant then from (3.14), we can say that f and
g satisfies the algebraic equation R(f, g) = 0, where

R(w1, w2) = wn1 (w1 − 1)mP [w1]− wn2 (w2 − 1)mP [w2].

Csae 3. Suppose that B = −1. From (3.8), we have

G =
(A+ 1)F − A

F
. (3.16)

If A 6= −1, we obtain from (3.16) that

N

(
r,

1

F − A−1
A

)
= N

(
r,

1

G

)
.

By proceeding as in the proof of Case 1, we obtain a contradiction. Hence
A = −1. From (3.16), we get FG = 1 that is

(fn(f − 1)mP [f ]) . (gn(g − 1)mP [g]) = 1.

which is one of the conclusion.
Proof of Theorem 1.5 Let F = fn(f − 1)mP [f ] and G = gn(g − 1)mP [g].
Then F and G share (1, 2) and (∞, 0). Let H be defined as above. Suppose
that H 6≡ 0. From Lemma 2.3, we have

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N(r, F ) +N(r,G) + N̄∗(r,∞;F,G)

+ S(r, F ) + S(r,G). (3.17)
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It obvious that
N∗(r,∞;F,G) ≤ N(r, f). (3.18)

Combining (3.2), (3.3), (3.17), and (3.18), we deduce

(
n+m− γp −

σ

s

)
T (r, f)

≤
(
γp +m+

4 + σ

s

)
T (r, f) +

(
γp +m+

3 + σ

s

)
T (r, g) + S(r, f) + S(r, g).

(3.19)

Similarly, we can get(
n+m− γp −

σ

s

)
T (r, g)

≤
(
γp +m+

4 + σ

s

)
T (r, g) +

(
γp +m+

3 + σ

s

)
T (r, f) + S(r, f) + S(r, g).

(3.20)

Adding (3.19) and (3.20), we get(
n−m− 3γp −

3σ − 7

s

)
{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

which contradicts the condition (n−m− 3γp) s > 3σ + 7.
Similar to the cases discussed in Theorem 1.4, we see that Theorem 1.5

holds.
Proof of Theorem 1.6 Let F = fn(f − 1)mP [f ] and G = gn(g − 1)mP [g].
Then F and G share E3)(1, F ) = E3)(1, G) and (∞,∞). So N∗(r,∞;F,G) = 0.
Let H be defined as above. Suppose that H 6≡ 0. From Lemma 2.4, we have

T (r, F ) + T (r,G) ≤ 2N2

(
r,

1

F

)
+ 2N2

(
r,

1

G

)
+ 2N(r, F ) + 2N(r,G)

+ 2N∗(r,∞;F,G) + S(r, F ) + S(r,G). (3.21)

We deduce from (3.21) that

T (r, F ) + T (r,G) ≤ 4N
(
r,

1

f

)
+ 2mN

(
r,

1

f

)
+ 2N

(
r,

1

P [f ]

)
+ 2N(r, f)

+ 4N
(
r,

1

g

)
+ 2mN

(
r,

1

g

)
+ 2N

(
r,

1

P [g]

)
+ 2N(r, g)

+ S(r, f) + S(r, g). (3.22)

Using (3.3) and (3.22), we deduce(
n−m− 3γp −

3σ − 6

s

)
{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),
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which contradicts the condition (n−m− 3γp) s > 3σ + 6. Therefore H ≡ 0.
Similar to the cases discussed in Theorem 1.4, we see that Theorem 1.6

holds.
Proof of Theorem 1.7. Let F = fn(f − 1)mP [f ] and G = gn(g − 1)mP [g].
Then F and G share E3)(1, F ) = E3)(1, G) and (∞, 0). So N̄∗(r,∞;F,G) ≤
N(r,∞;F ) = N(r,∞;G). Let H be defined as above. Suppose that H 6≡ 0.
From Lemma 2.4, we have

T (r, F ) + T (r,G) ≤ 2N2

(
r,

1

F

)
+ 2N2

(
r,

1

G

)
+ 3N(r, F ) + 3N(r,G)

+ S(r, F ) + S(r,G). (3.23)

We deduce from (3.23), that

T (r, F ) + T (r,G) ≤ 4N
(
r,

1

f

)
+ 2mN

(
r,

1

f

)
+ 2N

(
r,

1

P [f ]

)
+ 3N(r, f) + 4N

(
r,

1

g

)
+ 2mN

(
r,

1

g

)
+ 2N

(
r,

1

P [g]

)
+ 3N(r, g) + S(r, f) + S(r, g). (3.24)

Using (3.3) and (3.24), we deduce(
n−m− 3γp −

3σ − 7

s

)
{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

which contradicts the condition (n−m− 3γp) s > 3σ + 7. Therefore H ≡ 0.
Similar to the cases discussed in Theorem 1.4, we see that Theorem 1.7 holds.
OPEN PROBLEM.

1. Can we expect the same conclusion by taking the difference-differential
polynomial P [f ] as in [7] and a polynomial P (f) of degree m in place of
the differential polynomial and (f − 1)m, respectively?

2. Is there any alternative method that reduces the condition n in all the
theorems?
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