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Abstract

This article is devoted to certain square root inequalities
related to the reciprocal of the square root function. We show
that some of them have the interesting property of being self-
improving and self-extending. Known results on this topic are
revisited and new ones are established. An open question is
also raised, the relevance of which is supported by a graphical
analysis.
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1 Introduction

Inequalities involving square roots are fundamental to mathematical analysis.
See [1], [5], [2], and [6]. In particular, they appear in various contexts such as
numerical methods, probability theory and approximation theory. A famous
chain of square root inequalities involving the reciprocal of the square root
function, i.e., 1/

√
x, is presented in the lemma below.

Lemma 1.1 For any x ≥ 1, we have

2
[√

x+ 1−
√
x
]
≤ 1√

x
≤ 2

[√
x−
√
x− 1

]
.
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This lemma can be found without proof in [7]. The inequalities presented are
mainly of theoretical interest, but they also have practical applications. Indeed,
thanks to an acceptable degree of precision, they can be used to estimate errors
in numerical methods, to bound probabilities in statistical analysis, and to
provide approximations in various branches of analysis.

In this article, we discuss some under-commented and new aspects of the
inequalities in Lemma 1.1. More precisely, we have three objectives: First,
we show that these inequalities have the ability to improve themselves thanks
to well-chosen simple manipulations; second, they are not as rigid as they
seem at first sight: some adaptable parameters can be introduced, relaxing
the assumption ”x ≥ 1”; and third, there is room for improvement for the
bounds of 1/

√
x. A conjecture leading to an open question on this last aspect

is formulated. It is supported by an extensive graphical analysis.

The next section, Section 2, focuses on results derived from Lemma 1.1
from an original point of view. Section 3 contains some new developments on
the topic, including a conjecture. Section 4 contains some open problems on
the topic. A conclusion is given in Section 5.

2 On Lemma 1.1

This section begins with an elegant proof of Lemma 1.1. It is followed by a
refinement and extensions based only on this lemma.

2.1 An elegant proof

There are several ways to prove Lemma 1.1. An elegant, intuitive and ”one-
piece” proof is given by means of integrals. Using the fact that 1/

√
t, t ≥ 1, is

decreasing, we get

√
x+ 1−

√
x =

∫ x+1

x

1

2
√
t
dt ≤ 1

2
√
x

∫ x+1

x

dt =
1

2
√
x

[(x+ 1)− x] =
1

2
√
x

=
1

2
√
x

[x− (x− 1)] =
1

2
√
x

∫ x

x−1
dt ≤

∫ x

x−1

1

2
√
t
dt =

√
x−
√
x− 1.

If we multiply all the terms by 2, and keep the extreme terms and 1/
√
x, we

get

2
[√

x+ 1−
√
x
]
≤ 1√

x
≤ 2

[√
x−
√
x− 1

]
.

The desired result is achieved.
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2.2 A refinement and an extension

The result below is an improvement of Lemma 1.1. It is a known result. For
example, it appears in [4] and is simply called ”square root inequalities”. The
interesting thing is that we prove it using only the inequalities in Lemma 1.1.
In a sense, Lemma 1.1 refines itself.

Proposition 2.1 The square root inequalities in Lemma 1.1 are self-improving;
for any x ≥ 1, we have

2
[√

x+ 1−
√
x
]
≤ 1√

x
≤
√
x+ 1−

√
x− 1 ≤ 2

[√
x−
√
x− 1

]
.

Proof. Taking into account the inequalities in Lemma 1.1, it is sufficient to
prove the two inequalities on the right side, i.e.,

√
x+ 1−

√
x− 1 ≤ 2

[√
x−
√
x− 1

]
(1)

and

1√
x
≤
√
x+ 1−

√
x− 1. (2)

From the extreme terms in the inequalities in Lemma 1.1, it immediately
follows that

√
x+ 1−

√
x ≤
√
x−
√
x− 1, (3)

which can be reformulated as

√
x+ 1 +

√
x− 1 ≤ 2

√
x. (4)

On the basis of these inequalities, let us consider Equations (1) and (2) in turn.
By applying Equation (3), we have

2
[√
x−
√
x− 1

]
=
√
x−
√
x− 1 +

√
x−
√
x− 1

≥
√
x−
√
x− 1 +

√
x+ 1−

√
x =
√
x+ 1−

√
x− 1.

Equation (1) is proved.
On the other hand, with the help of Equation (4) and a suitable conjugate,

we have

√
x+ 1−

√
x− 1 =

[√
x+ 1−

√
x− 1

] [√
x+ 1 +

√
x− 1

]
√
x+ 1 +

√
x− 1

=
(x+ 1)− (x− 1)√
x+ 1 +

√
x− 1

=
2√

x+ 1 +
√
x− 1

≥ 2

2
√
x

=
1√
x
.
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Equation (2) is established. This ends the proof of the proposition. �

Thus, thanks to the introduction of the term
√
x+ 1 −

√
x− 1 into the

inequalities of Lemma 1.1, we have shown that they have the ability to im-
prove themselves; only the inequalities of Lemma 1.1 are used in the proof
of Proposition 2.1 and

√
x+ 1 −

√
x− 1 does not involve 1/

√
x. This is an

under-commented aspect to the best of our knowledge. More in this direction
will be done in Section 3.

Proposition 2.1 may seem restrictive because we need x ≥ 1. In the proposi-
tion below, we see how the inequalities of this proposition can be self-expanding
by using two adjustable parameters, α and β, and considering β/

√
x+ α as

the central term.

Proposition 2.2 For any β > 0, α ∈ R, and x ≥ β − α, we have

2
[√

x+ α + β −
√
x+ α

]
≤ β√

x+ α
≤
√
x+ α + β −

√
x+ α− β

≤ 2
[√

x+ α−
√
x+ α− β

]
.

Proof. For any y ≥ β − α, let us set

x =
y + α

β
.

Then we have x ≥ 1 and Proposition 2.1 applied with this specific x gives

2

[√
y + α

β
+ 1−

√
y + α

β

]
≤ 1√

(y + α)/β
≤
√
y + α

β
+ 1−

√
y + α

β
− 1

≤ 2

[√
y + α

β
−
√
y + α

β
− 1

]
.

By arranging some ratio terms, we get

2

[√
y + α + β

β
−
√
y + α

β

]
≤

√
β√

y + α
≤

√
y + α + β

β
−

√
y + α− β

β

≤ 2

[√
y + α

β
−

√
y + α− β

β

]
.

Multiplication of all terms by
√
β results in

2
[√

y + α + β −
√
y + α

]
≤ β√

y + α
≤
√
y + α + β −

√
y + α− β

≤ 2
[√

y + α−
√
y + α− β

]
.
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Just replacing ”y” by ”x” for notation reasons, we end the proof. �

By taking α = 0 and β = 1, Proposition 2.2 becomes Proposition 2.1. If we
analyze his proof of Proposition 2.2, we see that Proposition 2.1 has extended
itself with a little effort (and the same can be said for Lemma 1.1).

To conclude this section, we have shown that Lemma 1.1 can be self-
improving and self-expanding, which remains a fascinating mathematical fact.
The rest of the article is devoted to some new developments inspired by this
lemma.

3 Some new developments

3.1 A new chain of inequalities

The proposition below presents a new chain of inequalities involving 1/
√
x and

2
[√
x+ 1−

√
x
]
, and some intermediate square root and power terms.

Proposition 3.1 For any x ≥ 1, we have

2
[√

x+ 1−
√
x
]
≤ 2

3

[
(x+ 2)3/2 − x3/2 − (x+ 1)3/2 + (x− 1)3/2

]
≤ 1

2

[√
x+ 2−

√
x+
√
x+ 1−

√
x− 1

]
≤ κ

1√
x
,

where

κ =
1

2

[
1 +
√

2
]
≈ 1.2071.

Proof. Let us start with the first inequality on the left side. It follows from
Proposition 2.1 that, for any t ≥ 1,

1√
t
≤
√
t+ 1−

√
t− 1.

Hence, we get

2
[√

x+ 1−
√
x
]

=

∫ x+1

x

1√
t
dt ≤

∫ x+1

x

[√
t+ 1−

√
t− 1

]
dt

=

[
2

3
(t+ 1)3/2 − 2

3
(t− 1)3/2

]t=x+1

t=x

=
2

3

[
(x+ 2)3/2 − x3/2 − (x+ 1)3/2 + (x− 1)3/2

]
.

The desired inequality is demonstrated.



24 C. Chesneau

We now consider the second inequality on the left side. Let us set f(t) =√
t+ 1−

√
t− 1, t ≥ 1. We then have

f ′′(t) =
(t+ 1)3/2 − (t− 1)3/2

4(t− 1)3/2(t+ 1)3/2
≥ 0,

which means that f(t) is convex. From the bound on the right side of the
Hermite-Hadamard inequality applied to the function f(t), a = x and b = x+1,
it follows that

2

3

[
(x+ 2)3/2 − x3/2 − (x+ 1)3/2 + (x− 1)3/2

]
=

∫ x+1

x

[√
t+ 1−

√
t− 1

]
dt

=
1

b− a

∫ b

a

f(t)dt ≤ 1

2
[f(b) + f(a)]

=
1

2
[f(x+ 1) + f(x)] =

1

2

[√
x+ 2−

√
x+
√
x+ 1−

√
x− 1

]
.

See [3] for more details on the Hermite-Hadamard inequality.
For the last inequality to prove, by the use of appropriate conjugates, we

have

1

2

[√
x+ 2−

√
x+
√
x+ 1−

√
x− 1

]
=

1

2

[[√
x+ 2−

√
x
] [√

x+ 2 +
√
x
]

√
x+ 2 +

√
x

+

[√
x+ 1−

√
x− 1

] [√
x+ 1 +

√
x− 1

]
√
x+ 1 +

√
x− 1

]
=

1

2

[
2√

x+ 2 +
√
x

+
2√

x+ 1 +
√
x− 1

]
=

1√
x+ 2 +

√
x

+
1√

x+ 1 +
√
x− 1

.

We clearly have √
x+ 2 +

√
x ≥
√
x+
√
x = 2

√
x.

On the other hand, by using the famous square root inequality
√
u+ v ≤√

u+
√
v, for u ≥ 0 and v ≥ 0, we have

√
x+ 1 +

√
x− 1 ≥

√
x+ 1 + x− 1 =

√
2x =

√
2
√
x.

Therefore, we get

1

2

[√
x+ 2−

√
x+
√
x+ 1−

√
x− 1

]
≤ 1

2

[
1 +
√

2
] 1√

x
= κ

1√
x
.
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The desired inequalities are demonstrated. The proof is complete. �

For any x ≥ x∗ ≈ 1.034, numerical analysis shows that we can improve κ
and replace it with κ∗ = 1. The rigorous proof of this claim is not given here.

Proposition 3.1 is not a direct improvement of Proposition 2.1, but provides
alternative inequalities related to 1/

√
x that can be used in several mathemat-

ical scenarios. To the best of our knowledge, these inequalities are new.

Some refinements and a conjecture are the subject of the next part.

3.2 Some refinements

The proposition below presents a new chain of inequalities involving power
terms, and a related conjecture involving 1/

√
x and

√
x+ 1 −

√
x− 1, and

some intermediate power terms.

Proposition 3.2 The following inequality holds: For any x ≥ 1, we have

2

3

[
(x+ 2)3/2 − x3/2 − (x+ 1)3/2 + (x− 1)3/2

]
≤ 4

3

[
(x+ 1)3/2 − 2x3/2 + (x− 1)3/2

]
,

or, equivalently,

(x+ 2)3/2 − x3/2 − (x+ 1)3/2 + (x− 1)3/2 ≤ 2
[
(x+ 1)3/2 − 2x3/2 + (x− 1)3/2

]
.

To complete this result, we formulate a conjecture below.

Conjecture: The above inequality is interesting because a graphical analysis of
it shows that, for any x ≥ 1, we have

2

3

[
(x+ 2)3/2 − x3/2 − (x+ 1)3/2 + (x− 1)3/2

]
≤ 1√

x

≤ 4

3

[
(x+ 1)3/2 − 2x3/2 + (x− 1)3/2

]
≤
√
x+ 1−

√
x− 1, (5)

and these inequalities are numerically sharp (a graphical proof is given).

Proof. An inequality in Proposition 2.1 states that, for any t ≥ 1,

√
t+ 1−

√
t− 1 ≤ 2

[√
t−
√
t− 1

]
.
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Therefore, we have

2

3

[
(x+ 2)3/2 − x3/2 − (x+ 1)3/2 + (x− 1)3/2

]
=

∫ x+1

x

[√
t+ 1−

√
t− 1

]
dt

≤ 2

∫ x+1

x

[√
t−
√
t− 1

]
dt = 2

[
2

3
t3/2 − 2

3
(t− 1)3/2

]t=x+1

t=x

=
4

3

[
(x+ 1)3/2 − x3/2 − x3/2 + (x− 1)3/2

]
=

4

3

[
(x+ 1)3/2 − 2x3/2 + (x− 1)3/2

]
.

The first inequality is proved.
Let us now illustrate the proposed conjecture with a graphical analysis. To

do this, we set

p(x) =
1√
x
− 2

3

[
(x+ 2)3/2 − x3/2 − (x+ 1)3/2 + (x− 1)3/2

]
,

q(x) =
4

3

[
(x+ 1)3/2 − 2x3/2 + (x− 1)3/2

]
− 1√

x

and

r(x) =
√
x+ 1−

√
x− 1− 4

3

[
(x+ 1)3/2 − 2x3/2 + (x− 1)3/2

]
.

Figures 1, 2 and 3 show the curves of these three functions for different ranges
of x ≥ 1, respectively.
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Figure 1: Curves of p(x) for x ∈ [1, 2) for a focus on the behavior around x = 1
(left), for x ∈ [1, 100) for a global view (middle), and for x ∈ [99, 100) for a
focus on the behavior around x = 100, which is considered as a large value
(right)
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Figure 2: Curves of q(x) for x ∈ [1, 2) for a focus on the behavior around x = 1
(left), for x ∈ [1, 100) for a global view (middle), and for x ∈ [99, 100) for a
focus on the behavior around x = 100 (right)
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Figure 3: Curves of r(x) for x ∈ [1, 2) for a focus on the behavior around x = 1
(left), for x ∈ [1, 100) for a global view (middle), and for x ∈ [99, 100) for a
focus on the behavior around x = 100 (right)

From these figures, it is clear that p(x) ≥ 0, q(x) ≥ 0 and r(x) ≥ 0 for any
x ∈ [1, 100], and, of course, further zoomed graphical tests confirm this for any
values of x ≥ 100. This ends the graphical analysis. �

If we analyze the proof of Proposition 3.2 and the graphical verification of
the conjecture, this again supports the fact that the square root inequalities
in Proposition 2.1 are self-improving. It also proves that there is room for
mathematical improvement for square root inequalities centered on 1/

√
x.
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4 Open problems

An open problem is to find a1 ∈ R, b1 ∈ R, c1 ∈ R and d1 ∈ R such that the
following inequality is sharp:

1√
x
≤ a1

[√
x+ b1 + c1

√
x+ d1

]
and a1

[√
1 + b1 + c1

√
1 + d1

]
= 1 to correspond to the value of 1/

√
x at x = 1.

This simple constraint on the parameters is not satisfied by the inequalities we
have presented.

Similarly, another open problem is to find a2 ∈ R, b2 ∈ R, c2 ∈ R and
d2 ∈ R such that the following inequality is sharp:

a2

[√
x+ b2 + c2

√
x+ d2

]
≤ 1√

x

and a2
[√

1 + b2 + c2
√

1 + d2
]

= 1.

On the other hand, the inequalities in Equation (5) have been proved graph-
ically, which leads to the following open question: Can we prove the inequal-
ities in Equation (5) with a rigorous analytical proof that complements the
graphical analysis?

5 Conclusion

In this article, we have ”taken a fresh look” at known square root inequalities
centered on 1/

√
x, and innovated with some new ones. A focus is put on the

interesting property of some such inequalities to be self-improving and self-
expanding. Some of the results can be summarized in the following chain of
inequalities: For any x ≥ 1, we have

2
[√

x+ 1−
√
x
]
≤ 2

3

[
(x+ 2)3/2 − x3/2 − (x+ 1)3/2 + (x− 1)3/2

]
≤︸︷︷︸
?

1√
x

≤ 4

3

[
(x+ 1)3/2 − 2x3/2 + (x− 1)3/2

]
≤︸︷︷︸
?

√
x+ 1−

√
x− 1

≤ 2
[√
x−
√
x− 1

]
, (6)

where ? refers to graphically proven inequalities. This chain of inequalities is
illustrated in Figure 4.
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Figure 4: Curves of the functions in Equation (6), where Term 1 denotes the
first function of the left side, Term 2 denotes the second function of the left
side, and so on, for x ∈ [1, 2]

Our results raise mathematical questions about their rigorous analytical
proofs. We believe that efforts can be made in this direction and further
refinements can be demonstrated with some of the tools used in the article
and others.
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