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Abstract

One key aspect of soft set theory is abstraction. The main
idea in soft set theory revolves around making decisions with
the guidance of experts. The combination of soft sets and
rough sets led to the creation of soft-rough sets. This study ex-
pands the concept of soft-rough matrices to square soft-rough
matrices (ss–r m). Various noteworthy properties of ss–r m
are examined in this paper.

Keywords: Soft sets, rough sets, soft-rough sets, soft-rough matrices,
square soft-rough matrices.

2010 Mathematics Subject Classification:90B50, 06D72,15B99.

1 Introduction

Various old theories, like Probability theory, Theory of evidence, and the
Heisenberg uncertainty principle, are in books to deal with uncertainty well.
Alongside these, recent tools such as fuzzy sets, rough sets, soft sets, neu-
ral networks, and genetic algorithms offer better ways to handle uncertainty.
Many researchers actively contribute to improving these recent uncertainty
theories. Present studies focus on mixes of these theories, like soft-rough sets,
rough soft-sets, soft-rough fuzzy sets, rough soft fuzzy sets, modified soft-
rough sets, and more. This book aims to explore the theory of uncertainty in
fuzzy sets, rough sets, and soft sets. The main goal is to study mixes from
the three theories, particularly soft-rough sets, soft-rough fuzzy sets, and soft-
rough interval-valued fuzzy sets. As an extension of soft-rough matrices, the
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idea of square soft-rough matrices is introduced, and some of their features are
looked into.

There are different tools to deal with uncertainty, including old theories
like Probability theory and newer ones like fuzzy sets, interval-valued fuzzy
sets, intuitionistic fuzzy sets, rough sets, and soft sets. In Pawlak’s rough set
theory [8], uncertainty is shown by the edge of a set instead of a membership
function. Vijayabalaji and Balaji [12] made rough matrices using rough mem-
bership functions and suggested a decision theory. Molodstov [6] talked about
problems in existing theories, like rough sets, and said they lack good tools.
He introduced a new mathematical tool, soft sets, to fix these problems and
make dealing with uncertainties better. Soft sets let us roughly describe things,
and we can use different things like real numbers, functions, and words. Maji
and Roy [5] used soft sets in decision-making, and Wille [14] showed property
systems in a binary way. Several researchers [3, 7, 9, 10, 15] studied property
systems and exhibited how they relate to data analysis. Cagman [1, 2] sug-
gested a decision-making way and said soft matrices represent soft sets. They
are good because we can easily store and work with them on computers. Vi-
jayabalaji and Ramesh [11] showed product soft matrices and talked about a
decision theory. Feng Feng [4] talked about mix models from soft sets and
rough sets, like soft-rough sets. Soft-rough sets are new because they make
a new structure using soft guesses instead of Pawlak’s rough ideas. Maji and
Roy [5] used AHP in group decisions with soft matrices. Vijayabalaji [13] in-
troduced the concept of soft-rough matrices by building upon soft-rough sets.
He structured these matrices by assigning three values to the positive region,
negative region, and boundary region of a soft-rough set. Section 2 explains
why there is a requirement for square soft-rough matrices, while Section 3
presents these matrices, introducing compelling concepts and rules.

2 Need of square soft-rough matrices

Soft set theory involves abstraction, focusing on decisions guided by experts.
The collaboration of soft sets and rough sets gave rise to soft-rough sets. In
this research, the idea of soft-rough matrices is broadened to square soft-rough
matrices (ss–r m). This paper explores several important characteristics of
ss–r m. A square soft-rough matrix is an n by n matrix, where n is the number
of rows and columns. The advantage of using a square soft-rough matrix lies
in its symmetry and uniformity. Because it has an equal number of rows and
columns, it simplifies certain computations and analyses. This symmetry can
lead to more efficient mathematical operations and a clearer representation of
relationships within the data. Additionally, the square format can enhance the
applicability of square soft-rough matrices in various mathematical and com-
putational models, making them versatile and easier to work with in certain
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contexts.

3 Square soft-rough matrices

This part introduces our new idea, square soft-rough matrices, with clear ex-
planations and includes interesting definitions and theorems for better under-
standing.

Definition 3.1. A special function ISR : U → {0, 0.5, 1} defined on soft-
rough set is termed as square soft-rough matrix (s-s-r m).
That is a soft-rough matrix is defined by

$SR =


1, ifu ∈ Posp(X)
0, ifu ∈ Negp(X)
a, ifu ∈ Bndp(X),where a = 0.5

So, $SR =


%11 %12 · · · %1n
%21 %22 · · · %2n
...

...
. . .

...
%m1 %m2 · · · %nn

 = (%xy)nn.

Definition 3.2. A s-s-r m is said to be zero s-s-r m if %xy = 0 for all
%xy ∈ $SR..

Definition 3.3. The complement of a s-s-r m is defined as %xy = 1 − %xy
for all %xy ∈ $SR.
Definition 3.4. Let [axy] and [bxy] ∈ $SR. Then the intersection of [%xy]
and [ςxy] is defined by [%xy] ∩ [ςxy] = min{%xy, ςxy}.
Definition 3.5. Let [%xy] and [ςxy] ∈ $SR. Then the union of [%xy] and
[ςxy] is defined by [%xy] ∪ [ςxy] = max{%xy, ςxy}.

Theorem 3.6. Let [%xy] and [ςxy] ∈ $SR. Then
(i) ([%xy] ∪ [ςxy])

c = [%xy]
c ∩ [ςxy]

c.
(ii) ([%xy] ∩ [ςxy])

c = [%xy]
c ∪ [ςxy]

c.
Proof.
(i) For all x and y,

([%xy] ∪ [ςxy])
c

= (max {%xy, ςxy}c ) c

= 1- max {%xy, ςxy}
= min {1− %xy, 1− ςxy}
= [%xy]

c ∩ [ςxy]
c.

(ii) For all x and y,
([%xy] ∩ [ςxy])

c

= (min {%xy, ςxy}c ) c
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= 1- min {%xy, ςxy}
= max {1− %xy, 1− ςxy}
= [%xy]

c ∪ [ςxy]
c.

Theorem 3.7. Let [%xy], [ςxy] ∈ $SR. Then
(i) %xy ∪ axy = %xy
(ii) %xy ∩ axy = %xy
(iii) %xy ∪ ςxy = ςxy ∪ %xy
(iv) %xy ∩ ςxy = ςxy ∩ %xy
Proof.
Let %xy ∈ ISR
(i)%xy ∪ %xy = axy

%xy ∪ %xy = [%xy] ∪ [%xy] for all x, y

= {max{%xy, %xy}} for all x, y

= {%xy}
= %xy.

(ii)%xy ∩ %xy = %xy

%xy ∩ %xy = [%xy] ∩ [%xy] for all x, y

= min{%xyxy, %xy}for all x, y

= {%xy}
= %xy.

(iii)%xy ∩ ςxy = ςxy ∩ %xy

%xy ∩ ςxy = {%xy} ∩ {ςxy}for allx, y

%xy ∩ ςxy = min{%xy, ςxy} for all x, y

= min{ςxy, %xy} for all x, y

= bxy ∩ %xy.

(iv)%xy ∪ ςxy = ςxy ∪ %xy

%xy ∪ ςxy = {%xy} ∪ {ςxy} for all x, y

%xy ∪ ςxy = max{%xy, ςxy} for allx, y

= max{ςxy, %xy} for all x, y

= ςxy ∪ %xy.

Theorem 3.8. Let [%xy], [ςxy] and [ξxy] ∈ $SR. Then
(i)(%xy ∪ ςxy) ∪ ξxy = %xy ∪ (ςxy ∪ ξxy)
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(ii)(%xy ∩ ςxy) ∩ ξxy = %xy ∩ (ςxy ∩ ξxy).
Proof.
Let %xy , ςxy and ξxy ∈ ISR
(i)(%xy ∪ ςxy) ∪ ξxy = axy ∪ (ςxy ∪ ξxy)

(%xy ∪ ςxy) ∪ ξxy = (%xy ∪ ςxy) ∪ ξxy
= max{%xy, ςxy} ∪ ξxyfor all x, y

= max
{

max{%xy, ςxy}, ξxy
}

= max
{
%xy,max{ςxy, ξxy}

}
= %xy ∪max{ςxy, ξxy}
= %xy ∪ (ςxy ∪ ξxy)

(ii)(%xy ∩ ςxy) ∩ ξxy = %xy ∩ (ςxy ∩ ξxy)

(%xy ∩ ςxy) ∩ ξxy = (%xy ∩ bxy) ∩ ξxy
= min{%xy, ςxy} ∩ ξxy for all x, y

= min
{

min{%xy, ςxy}, ξxy
}

= min
{
%xy,min{ςxy, ξxy}

}
= %xy ∩min{ςxy, ξxy}
= %xy ∩ (ςxy ∩ ξxy)

Theorem 3.9. Let [%xy], [ςxy] ∈ $SR. Then
(i)(%xy ∪ ςxy)C = %xy

C ∩ ςxyC
(ii)(%xy ∩ ςxy)C = %xy

C ∪ ςxyC
Proof.
Let %xy&ςxy ∈ ISR
(i)(%xy ∪ ςxy)C = (%xyxy ∪ ςxy)

C for all x, y

(%xy ∪ ςxy)C = 1− (%xy ∪ ςxy)

= 1−
{

max(%xy, ςxy)
}

for all x, y

= min
{

(1− %xy), (1− ςxy)
}

= min
{
%xy

C , ςxy
C
}

= %xy
C ∩ ςxyC .
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(ii)(%xy ∩ ςxy)C = (%xy ∩ ςxy)C for all x, y

(%xy ∩ ςxy)C = 1− (%xy ∩ ςxy)

= 1−
{

min(%xy, ςxy)
}

for all x, y

= max
{

(1− %xy), (1− ςxy)
}

= max
{
%xy

C , ςxy
C
}

= %xy
C ∪ ςxyC .

Theorem 3.10. Let [%xy], [ςxy] and [ξxy] ∈ $SR. Then
(i)(%xy ∪ ςxy) ∩ ξxy = (axy ∩ cxy) ∪ (ςxy ∩ ξxy)
(ii)(%xy ∩ ςxy) ∪ ξxy = (axy ∪ cxy) ∩ (ςxy ∪ ξxy).
Proof.
Let %xy, ςxy and ξxy ∈ ISR.
(i)(%xy ∪ ςxy) ∩ ξxy = (%xy ∩ cxy) ∪ (ςxy ∩ ξxy)

(%xy ∪ ςxy) ∩ ξxy = max
{
%xy, ςxy

}
∩ ξxy

= min
{

max(%xy, ςxy), ξxy

}
= max

{
min(%xy, cxy),min(ςxy, ξxy)

}
= min

{
%xy, cxy

}
∪min

{
ςxy, ξxy

}
= (%xy ∩ cxy) ∪ (ςxy ∩ cxy).

(ii)(%xy ∩ ςxy) ∪ cxy = (%xy ∪ cxy) ∩ (ςxy ∪ cxy)

(%xy ∩ ςxy) ∪ cxy = min
{
%xy, ςxy

}
∪ cxy

= max
{

min(%xy, ςxy), cxy

}
= min

{
max(%xy, cxy),max(ςxy, cxy)

}
= max

{
%xy, cxy

}
∩max

{
ςxy, cxy

}
= (%xy ∪ cxy) ∩ (ςxy ∪ cxy).

Theorem 3.11. Let [%xy] ∈ $SR. Then
%xy ∪ %xy = %xy ∩ %xy = %xy.
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Proof.
Follows from Theorem 3.7.

Theorem 3.12. Let [%xy] and [ςxy] ∈ $SR. Then
(i)%xy ∪ (%xy ∩ ςxy) = %xy
(ii)%xy ∩ (%xy ∪ ςxy) = %xy.
Proof.
Let %xy and ςxy ∈ $SR

(i)%xy ∪ (%xy ∩ ςxy) = %xy ∪ (%xy ∩ ςxy) for all x,y

= max
{
%xy, (%xy ∩ ςxy)

}
= max

{
%xy,min(%xy, ςxy)

}
= %xy.

(ii)%xy ∩ (%xy ∪ ςxy) = %xyxy ∩ (%xyxy ∪ ςxyxy) for all x,y

= min
{
%xy, (%xy ∪ ςxy)

}
= min

{
%xy,max(%xy, ςxy)

}
= %xy.

Theorem 3.13. Let [%xy] and [ςxy] ∈ $SR. Then
(i)%xy ∪ ςxy = ςxy ∪ %xy
(ii)%xy ∩ ςxy = ςxy ∩ %xy.
Proof.
Follows from Theorem 3.7.

Definition 3.14. Let %xy ∈ $SR. Then the transpose of %xy is defined as
%xy

T = %xy.

Theorem 3.15. Let [%xy] ∈ $SR. Then
(i)(%xy ∪ %xy)T = %xy

T

(ii)(%xy ∩ %xy)T = %xy
T

(iii)(%xy
T )T = %xy.
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Proof.
Let %xy ∈ ISR and %yx

T = %xy
(i)

(%xy ∪ %xy)T =
(

max(%xy, %xy)
)T

= (%xy)
T .

(ii)

(%xy ∩ %xy)T =
(

min(%xy, %xy

)T
= (%xy)

T

= %yx

= %xy
T .

(iii)(%xy
T )T = %xy for all x, y

(%xy
T )T = (%xy

T )T

= %yx
T

= %xy.

Theorem 3.16. Let [%xy] and [%xy] ∈ $SR. Then

(i)(%xy ∪ ςxy)T = %xy
T ∪ ςxyT

(ii)(%xy ∩ ςxy)T = %xy
T ∩ ςxyT .

Proof.
Let %xy, bxy ∈ ISR and
%yx

T = %xyand ςyx
T = %xy ∈ $SR

(%xy ∪ bxy)T =
(

max{%xy, ςxy}
)T

for all x, y

= max{%yx, ςyx} for all x, y

= %yx ∪ ςyx
= %xy

T ∪ ςxyT .

(%xy ∩ ςxy)T =
(

max{%xy, bxy}
)T

for all x, y

= min{%yx, ςyx}for all x, y

= %yx ∩ ςyx
= %xy

T ∩ ςxyT .
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Theorem 3.17. Let [%xy], [ςxy] and [ξxy] ∈ $SR. Then
(i) [%xy] ∪ ([ςxy] ∩ [ξxy])= ([%xy] ∪ [ςxy]) ∩ ([cxy] ∪ [ξxy]).
(ii) [%xy] ∩ ([ςxy] ∪ [ξxy])= ([%xy] ∩ [ςxy]) ∪ ([%xy] ∩ [ξxy]).

Proof.
(i) For all x and y,

([%xy] ∪ ([ςxy] ∩ [ξxy])
= max{[%xy], [ςxy] ∩ [ξxy]}
= max{[%xy],min{[ςxy], [ξxy]}}
= min{max{[%xy], [ςxy]},max{[%xy], [ξxy]}}
=([%xy] ∪ [dxy]) ∩ ([%xy] ∪ [ξxy]).

(ii) For all x and y,
([%xy] ∩ ([ςxy] ∪ [ξxy])
= min{[%xy], [ςxy] ∪ [ξxy]}
= min{[%xy],max{[ςxy], [ξxy]}}
= max{min{[%xy], [ςxy]},min{[%xy], [ξxy]}}
=([%xy] ∩ [ςxy]) ∪ ([%xy] ∩ [exy]).

Definition 3.18. Let [%xy] and [ςxy] ∈ $SR. Then the not intersection of
[%xy] and [ςxy] is defined by [%xy]∧[ςxy] = min{1− %xy, 1− ςxy}.
Definition 3.19. Let [%xy] and [ςxy] ∈ $SR. Then the not union of [%xy]
and [ςxy] is defined by [%xy]∨[ςxy] = min{1− %xy, 1− ςxy}.

Theorem 3.20. Let [%xy] and [dxy] ∈ $SR. Then
(i) ([%xy] ∧ [ςxy])

c = [%xy]
c ∨ [ςxy]

c.
(ii) ([%xy] ∨ [ςxy])

c = [%xy]
c ∧ [dxy]

c.
Proof.
(i) For all x and y,

([%xy] ∧ [ςxy])
c

= (max {1− cxy, 1− ςxy} ) c

= 1- max {1− %xy, 1− ςxy}
= min {1− (1− %xy), 1− (1− ςxy)}
=min{1− [%xy]

c, 1− [ςxy]
c}

= [%xy]
c ∨ [ςxy]

c.
(ii) For all x and y,

([%xy] ∨ [ςxy])
c

= (min {1− %xy, 1− ςxy} ) c

= 1- min {1− %xy, 1− ςxy}
= max {1− (1− %xy), 1− (1− ςxy)}
=max{1− [%xy]

c, 1− [ςxy]
c}

= [%xy]
c ∨ [ςxy]

c.
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4 Conclusion

This paper talks about square soft-rough matrices (ssr m) and presents some
interesting theorems and results related to them. This theory expands the
concept of soft-rough matrices to ssr m.

5 Open Problem

Our research suggests that the following open problems could potentially be
resolved.
(1) Is it feasible to determine the inverse of ssr m.
(2) Can we explore the concept of determinant and adjoint of SSRM in an
intriguing manner.
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