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Abstract
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1 Introduction

In this work, we are concerned the following higher-order hyperbolic type equa-
tion 

ztt +Az = |z|q−1 z, x ∈ Ω, t > 0,
∂iz(x,t)
∂vi

= 0, i = 0, 1, ...,m− 1, x ∈ ∂Ω, t ≥ 0,
z(x, 0) = z0(x), zt (x, 0) = z1 (x) , x ∈ Ω

(1)

where A = (−∆)m , m ≥ 1 is a natural number, Ω is a bounded domain
with smooth boundary ∂Ω in Rn (n ≥ 1) , so that the divergence theorem can

be applied, ∂iz(x,t)
∂vi

denotes the i−order normal derivation of z and v is unit
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outward normal vector on ∂Ω. The power index q of the source term satisfies.{
1 < q <∞, n ≤ 2m,
1 < q < n

n−2m
, n > 2m.

In [12], Vitillaro considered the local existence, global existence and blow up
of solutions with nonlinear boundary condition for the following wave equation

ztt −∆z = |z|q−1 z.

In [14], Yacheng studied the potential wells of solutions for the following
wave equation

ztt −∆z = |z|q−1 z.

Later, Liu and Li [4] studied the global existence and blow up of solutions with
the subcritical and critical initial energy for the same equation.

After that many authors [1, 2, 3, 9, 10, 11] considered the existence and
blow up of solutions of the problem for various nonlinear PDE by using the
potential well method.

We focus on a family of new potential wells and their applications to higher-
order hyperbolic-type equation (1). The potential well was introduced by
Payne and Sattinger [6] and Sattinger [7]. The main purpose of this work is to
construct a family of new potential wells and their outside sets by modifying
the depths of the potential wells for the higher-order hyperbolic-type equation
inspired by [4, 13].

In several mathematical models, we face higher-order partial differential
equations (PDE). For example, it can be found in fluid dynamics, electromag-
netism, biology, mechanics and image processing, here 3-dimensional problems
are represented on the surfaces, for instance in the case of thin geometries,
modeled as membranes, plates or shells, depending on the structure of the
original domain. This leads to defining surface partial differential equations
which often involve high-order differential operators [8].

The outline of this work is as follows: In part 2, we define the potential
wells for our problem. In part 3, we prove the global existence and blow up of
solutions with the subcritical initial energy (E (0) < d (δ)). In part 4, we prove
the global existence and blow up of solutions with the critical initial energy
(E (0) = d (δ)).

In this work, we denote

‖.‖q = ‖.‖Lq(Ω), ‖.‖ = ‖.‖2, (z, v) =

∫
Ω

zvdx.

2 Setup of potential wells

In this section, we define the potential wells for our problem.
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2.1 Potential wells family and their depths

We define the energy functional as

E (t) =
1

2
‖zt‖2 +

1

2
‖A

1
2 z‖2 − 1

q + 1
‖z‖q+1

q+1,

which satisfies the energy identity

E (t) = E (0)

for all t ≥ 0. Also, we define the auxiliary functional

Jδ (z) =
δ

2
‖A

1
2 z‖2 − 1

q + 1
‖z‖q+1

q+1, 0 < δ ≤ 1.

Now, we are able to define the depths of the potential wells

d (δ) = max
y∈[0,∞)

gδ (y) ,

here
y = ‖A

1
2 z‖,

gδ (y) =
δ

2
y2 − 1

q + 1
cq+1yq+1

and c is the best constant for the Sobolev embedding fromHm
0 (Ω) into Lq+1 (Ω) .

Let g′δ (y) = 0, then

yδ = δ
1
q−1 c−( q+1

q−1). (2)

From here

d (δ) = gδ (yδ) =
q − 1

2 (q + 1)
δ
q+1
q−1 c−2( q+1

q−1). (3)

By using the (2) and (3), we have

yδ =

[
d (δ)

δ

2 (q + 1)

q − 1

] 1
2

.

Like this, we can define a family of potential wells

Wδ =

{
z ∈ Hm

0 (Ω) | ‖A
1
2 z‖ <

[
2

(
q + 1

q − 1

)
d (δ)

δ

] 1
2

}
,

and their outside sets

Vδ =

{
z ∈ Hm

0 (Ω) | ‖A
1
2 z‖ >

[
2

(
q + 1

q − 1

)
d (δ)

δ

] 1
2

}
.

It is obvious

∂Wδ = ∂Vδ =

{
z ∈ Hm

0 (Ω) | ‖A
1
2 z‖ =

[
2

(
q + 1

q − 1

)
d (δ)

δ

] 1
2

}
.
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Lemma 2.1 Assume that z ∈ Hm
0 (Ω).

i) If z ∈ Wδ and ‖A 1
2 z‖ 6= 0, then δ‖A 1

2 z‖2 > ‖z‖q+1
q+1.

ii) If z ∈ ∂Wδ, then δ‖A 1
2 z‖2 ≥ ‖z‖q+1

q+1.

iii) If δ‖A 1
2 z‖2 < ‖z‖q+1

q+1, then z ∈ Vδ.
iv) If δ‖A 1

2 z‖2 = ‖z‖q+1
q+1 and ‖A 1

2 z‖ 6= 0, then z ∈ Hm
0 (Ω)\Wδ = Vδ∪∂Vδ.

Proof 2.2 i) Since z ∈ Wδ, we obtain

‖A
1
2 z‖ <

[
2

(
q + 1

q − 1

)
d (δ)

δ

] 1
2

,

which, together with (3), we have

‖A
1
2 z‖ < δ

1
q−1 c−

q+1
q−1 .

From here

δ > cq+1‖A
1
2u‖q−1.

Since ‖A 1
2 z‖ 6= 0, multiplying the above inequality by ‖A 1

2 z‖2, we get

δ‖A
1
2 z‖2 > cq+1‖A

1
2 z‖q+1,

and so

‖z‖q+1
q+1 < δ‖A

1
2 z‖2.

ii) From z ∈ ∂Wδ we get

‖A
1
2 z‖ =

[
2 (q + 1)

q − 1

d (δ)

δ

] 1
2

.

Similarly to (i), we have

‖z‖q+1
q+1 ≤ δ‖A

1
2 z‖2.

iii) Taking into account ‖A 1
2 z‖ 6= 0, we have

δ‖A
1
2 z‖2 < ‖z‖q+1

q+1

≤ cq+1‖A
1
2 z‖q+1

2 ,

thus

δ < cq+1‖A
1
2 z‖q−1

2 .

We further get

‖A
1
2 z‖ > δ

1
q−1 c−

q+1
q−1 .
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Combining this with (3), we get

‖A
1
2 z‖ >

[
2 (q + 1)

q − 1

d (δ)

δ

] 1
2

.

Hence z ∈ Vδ.
iv) By the proof of (iii) we know that δ‖A 1

2 z‖2 = ‖z‖q+1
q+1 and ‖A 1

2 z‖2 6= 0
imply

‖A
1
2 z‖ ≥

[
2 (q + 1)

q − 1

d (δ)

δ

] 1
2

.

Hence z ∈ Hm
0 (Ω) \Wδ = Vδ ∪ ∂Vδ.

2.2 Invarience of the potential wells and their outside
sets

In this part, we show that Wδ and Vδ are both invariant under the flow of
problem (1) with the subcritical inital energy.

Definition 2.3 Function z = z (x, t) is called a weak solution of problem (1)
over Ω× [0, T ) , if z ∈ L∞ (0, T ;Hm

0 (Ω)) , zt ∈ L∞ (0, T ;L2 (Ω)) , satisfying

i) for all v ∈ Hm
0 (Ω) and a.e. t ∈ [0, T )

(zt (t) , v) +

∫ t

0

(
A

1
2 z (t) ,A

1
2v
)
dτ = (z1, v) +

∫ t

0

(
|z (τ) |q−1z (τ) , v

)
dτ, (4)

ii) z (0) = z0 ∈ Hm
0 (Ω) , zt (0) = z1 ∈ L2 (Ω) .

Theorem 2.4 Suppose that z be a solution of problem (1) on Ω × [0, T ).
Assume further that z ∈ Hm

0 (Ω), z1 ∈ L2 (Ω) and 0 < E (0) < d (δ).

i) If z0 ∈ Wδ, then z (t) ∈ Wδ for all t ∈ [0, T ).

ii) If z0 ∈ Vδ, then z (t) ∈ Vδ for all t ∈ [0, T ).

Proof 2.5 i) Suppose that z (t) /∈ Wδ for some 0 < t < T . Then we see from
z0 ∈ Wδ that there exists the first time 0 < t0 < T such that z (t0) ∈ ∂Wδ.

Thus

‖A
1
2 z (t0) ‖ =

[
2 (q + 1)

q − 1

d (δ)

δ

] 1
2

.
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Consequently, from item (ii) of Lemma 1 that

Jδ (z (t0)) =
δ

2
‖A

1
2 z (t0) ‖2 − 1

q + 1
‖z (t0) ‖q+1

q+1

= δ

(
1

2
− 1

q + 1

)
‖A

1
2 z (t0) ‖2 +

1

q + 1

(
δ‖A

1
2 z (t0) ‖2 − ‖z (t0) ‖q+1

q+1

)
≥ (q − 1) δ

2 (q + 1)
‖A

1
2 z (t0) ‖2

= d (δ) .

This contradicts

E (0) = E (t) =
1

2
‖zt (t) ‖2 + J1 (z (t)) < d (δ) , ∀t ∈ [0, T ) .

Hence z (t) ∈ Wδ for all t ∈ [0, T ).
ii) Arguing by contradiction, suppose that t0 ∈ (0, T ) is the first time such

that z (t0) ∈ ∂Vδ. The remainder of proof is the same as that in (i), and so it
is omitted here.

3 Problem (1) with the subcritical initial en-

ergy (E (0) < d (δ))

In this section, we proved the global existence and blow up of solutions for
problem (1) with the subcritical initial energy.

3.1 Global existence when 0 < E (0) < d (δ)

In this part, we proved the global existence of solutions for problem (1).

Theorem 3.1 Suppose that z0 ∈ Wδ, z1 ∈ L2 (Ω) and 0 < E (0) < d (δ).
Then problem (1) admits a solution z (t) ∈ Wδ for all t ∈ [0,∞).

Proof 3.2 Let {wj}∞j=1 be a completed orthogonal basis of Hm
0 (Ω) and an

orthonormal basis of L2 (Ω). We construct the approximate solution

zn (t) =
n∑
j=1

ξjn (t)wj, n = 1, 2, 3, ...,

solving the problem

(zntt (t) , wj) +
(
A

1
2 zn (t) ,A

1
2wj

)
=
(
|zn (t) |q−1zn (t) , wj

)
, j = 1, 2, 3, ...., n,

(5)
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zn (0) =
n∑
j=1

ξjn (0)wj → z0 ∈ Hm
0 (Ω) , (6)

znt (0) =
n∑
j=1

ξ′jn (0)wj → z1 ∈ L2 (Ω) . (7)

Multiplying eq. (5) by ξ′jn (t) and summing for j, we obtain

d

dt

(
1

2
‖znt (t) ‖2 +

1

2
‖A

1
2 zn (t) ‖2 − 1

q + 1
‖zn (t) ‖q+1

q+1

)
= 0. (8)

Integrating (8) with respect to t on [0, t], we arrive at

En (t) =
1

2
‖znt (t) ‖2 +

1

2
‖A

1
2 zn (t) ‖2 − 1

q + 1
‖zn (t) ‖q+1

q+1 = En (0) (9)

where

En (0) =
1

2
‖znt (0) ‖2 +

1

2
‖A

1
2 zn (0) ‖2 − 1

q + 1
‖zn (0) ‖q+1

q+1.

Recalling (6) and (7) yields En (0) → E (0) , 0 < En (0) < d (δ) and zn (0) ∈
Wδ for sufficiently large n. By similar arguments in (i) of Theorem 3, we get
zn (0) ∈ Wδ for all t ∈ [0,∞) . As a result

‖A
1
2 zn (t) ‖ <

[
2 (q + 1)

q − 1

d (δ)

δ

] 1
2

,∀t ∈ [0,∞)

and

‖zn (t) ‖q+1 ≤ c‖A
1
2 zn (t) ‖ < c

[
2 (q + 1)

q − 1

d (δ)

δ

] 1
2

, ∀t ∈ [0,∞) .

When ‖A 1
2 zn (t) ‖ 6= 0 , in terms of (i) in Lemma 1 and (9), we get

‖zn (t) ‖2 < 2d (δ) , ∀t ∈ [0,∞) .

When ‖A 1
2 zn (t) ‖ = 0, by means of (9), the above inequality remains valid.

Therefore, there exist z, X and a subsequence of {zn}, always relabeled as
the same and we shall not repeat, such that, as n→∞,

zn ⇀ z weakly star in L∞ (0,∞;Hm
0 (Ω)) , and zn → z a.e. in Ω× [0,∞) ,

znt ⇀ zt weakly star in L∞
(
0,∞;L2 (Ω)

)
,

|zn|q−1zn ⇀ X weakly star in L∞ (0,∞;Lr (Ω)) , r =
q + 1

q
.
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According to [5] (Chapter 1, Lemma 1.3), we get X = |z|q−1z.
For fixed j, integrating (5) with respect to t and taking n→∞, we obtain

(zt (t) , wj) +

∫ t

0

(
A

1
2 z (τ) ,A

1
2wj

)
dτ =

∫ t

0

(
|z (τ) |q−1z (τ) , wj

)
dτ + (z1, wj) .

Also, it is easy to see from (6) and (7) that z (0) = z0 in Hm
0 (Ω) , zt (0) = z1 in

L2 (Ω) . Consequently, z is a solution of problem (1) in the sense of Definition
2. In addition, according to (i) in Theorem 3, we get z (t) ∈ Wδ for all t ∈
[0,∞) .

3.2 Blow up when E (0) < d (δ)

In this part, we proved the blow up of solutions for problem (1).

Theorem 3.3 Suppose that z0 ∈ Vδ, z1 ∈ L2 (Ω) and E (0) < d (δ) . Then
solutions of problem (1) blow up in finite time.

Proof 3.4 Let z be a solution of problem (1). Now, we prove T <∞. If it is
not true, then T =∞. We define the auxiliary function

K (t) = ‖z‖2, t ∈ [0,∞) .

Then by taking the derivative of K (t) , we obtain

K ′ (t) = 2

∫
zztdx,

and

K ′′ (t) = 2

∫ [
z2
t + zztt

]
dx

= 2‖zt‖2 + 2‖z‖q+1
q+1 − 2‖A

1
2 z‖2

= (q + 3) ‖zt‖2 + (q − 1) ‖A
1
2 z‖2 − 2 (q + 1)E (0) (10)

When 0 < E (0) < d (δ) , by virtue of z0 ∈ Vδ and (ii) in theorem 3, we get
z (t) ∈ Vδ for all t ∈ [0,∞) and so

‖A
1
2 z‖2 >

2 (q + 1)

q − 1

d (δ)

δ
.

Hence

(q − 1) δ‖A
1
2 z‖2 > 2 (q + 1) d (δ)

> 2 (q + 1)E (0) ,
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which together with (10), gives

K ′′ (t) > (q + 3) ‖zt‖2.

When E (0) ≤ 0, on account of (10), the above inequality still holds. Therefore,
there exists a t0 > 0 such that K (t0) > 0 and K ′ (t) ≥ K ′ (t0) > 0 for a.e.
t ∈ [t0,∞) . Then

K (t) ≥ K ′ (t0) (t− t0) +K (t0) > 0, t ∈ [t0,∞) .

Thans to Cauchy-Schwarz inequality, we have

K (t)K ′′ (t)− (q + 3)

4
[K ′ (t)]

2 ≥ (q + 3)
[
‖z‖2‖zt‖2 − (z, zt)

2] ≥ 0.

Thus [
K−β (t)

]′
= −βK−(1+β) (t)K ′ (t) < 0,

and [
K−β (t)

]′′
=

−β
Kβ+2 (t)

[
K (t)K ′′ (t)− (β + 1) [K ′ (t)]

2
]
≤ 0,

for a.e. t ∈ [t0,∞) , where β = q−1
4
. Then there exists a T0 such that

lim
t→T0

K (t) =∞,

which conradicts T =∞. Thus, the proof is complete.

4 Problem (1) with the critical energy (E (0) =

d (δ))

In this section, we proved the global existence and blow up of solutions for
problem (1) with the critical initial energy.

4.1 Global existence when E (0) = d (δ)

Lemma 4.1 Suppose that z ∈ Hm
0 (Ω) and ‖A 1

2 z‖ 6= 0. Jδ (ρz) is strictly
increasing for ρ ∈ (0, ρ∗,δ), strictly decreasing for ρ ∈ (ρ∗,δ,∞) , and attains
the maximum at ρ = ρ∗,δ.

Proof 4.2 By the definition of Jδ (z), we get

Jδ (ρz) =
δ

2
‖A

1
2 (ρz) ‖2 − 1

q + 1
‖ρz‖q+1

q+1

=
δ

2
ρ2‖A

1
2 z‖2 − ρq+1

q + 1
‖z‖q+1

q+1.
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Thus
d

dρ
(Jδ (ρz)) = δρ‖A

1
2 z‖2 − ρq‖z‖q+1

q+1.

Clearly, there is a ρ∗,δ = ρ∗,δ (z) > 0 such that

δ‖A
1
2 z‖2 = ρq−1

∗,δ ‖z‖
q+1
q+1,

i.e.,
d

dρ
(Jδ (ρz)) |ρ∗,δ = 0.

Moreover, d
dρ

(Jδ (ρz)) > 0 for ρ ∈ (0, ρ∗,δ), d
dρ

(Jδ (ρz)) < 0 for ρ ∈ (ρ∗,δ,∞) .

Theorem 4.3 Assume that z0 ∈ Wδ, z1 ∈ L2 (Ω) and E (0) = d (δ). Then
problem (1) admits z (t) ∈ Wδ = Wδ ∪ ∂Wδ for all t ∈ [0,∞).

Proof 4.4 We will prove it in two cases.
i) ‖A 1

2 z0‖2 6= 0.
Let z0k = λkz0,here λk = 1− 1

k
, k = 2, 3, .... Now, we consider the following

problem
ztt +Az = |z|q−1z, (x, t) ∈ Ω× (0,∞)
∂iz(x,t)
∂vi

= 0, i = 0, 1, ...,m− 1, (x, t) ∈ ∂Ω× [0,∞)
z (x, 0) = z0k (x) , zt (x, 0) = z1 (x) , x ∈ Ω

(11)

whose energy functional is

Ekt (t) =
1

2
‖zkt‖2 +

1

2
‖A

1
2 zk‖2 − 1

q + 1
‖zk‖q+1

q+1.

From z0 ∈ Wδ and Lemma 1 it follows that

δ‖A
1
2 z0‖2 > ‖z0‖q+1

q+1, (12)

Thus
δ‖A

1
2 z0‖2 > λq−1

k ‖z0‖q+1
q+1,

and so
δ‖A

1
2 z0k‖2 > ‖z0k‖q+1

q+1.

Which implies that

Jδ (z0k) =
δ

2
‖A

1
2 (z0k) ‖2 − 1

q + 1
‖z0k‖q+1

q+1 > 0.

It follows from (12) and the proof of Lemma 6 that there exists a ρ∗,δ =
ρ∗,δ(z0) > 1 such that Jδ (ρz0) attains its maximum. Thus, according to Lemma
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6, Jδ (ρz0) is strictly increasing on [λk, 1] , and J1 (λkz0) < J1 (z0) . Conse-
quently,

0 < Ek (0)

=
1

2
‖z1‖2 + J1 (z0k)

<
1

2
‖z1‖2 + J1 (z0)

= E (0)

= d (δ) .

In terms of Theorem 4, for each k problem (11) admits a solution zk (t) ∈ Wδ

for all t ∈ [0,∞) satisfying

(zkt (t) , v) +

∫ t

0

(
A

1
2 zk (τ) ,A

1
2v
)
dτ =

∫ t

0

(
|zk (τ) |q−1zk (τ) , v

)
dτ + (z1, v) ,

(13)
for all v ∈ Hm

0 (Ω) . Consequently,

‖A
1
2 zk (t) ‖ <

[
2 (q + 1)

q − 1

d (δ)

δ

] 1
2

, ∀t ∈ [0,∞) . (14)

When ‖A 1
2 zk (t) ‖ 6= 0, in terms (i) of Lemma 1 Ek (t) = Ek (0) < d (δ),

we get
‖zkt (t) ‖2 < 2d (δ) , ∀t ∈ [0,∞) .

When ‖A 1
2 zk (t) ‖ = 0, the above inequality still holds. By the compactness

arguments used by the proof of Theorem 6, there exists a z such that, as k →∞
in (13),

(zt (t) , v) +

∫ t

0

(
A

1
2 z (τ) ,A

1
2v
)
dτ =

∫ t

0

(
|z (τ) |q−1z (τ) , v

)
dτ + (z1, v) .

Moreover, it follows from (11 ) that z (0) = z0 in Hm
0 (Ω) , zt (0) = z1 in

L2 (Ω) . Therefore, z is a solution of problem (1). By virtue of (14), we obtain

‖A
1
2 z (t) ‖ ≤ lim

m→∞
inf ‖A

1
2 zk (t) ‖ ≤

[
2 (q + 1)

q − 1

d (δ)

δ

] 1
2

, ∀t ∈ [0,∞) .

Hence z (t) ∈ Wδ for all t ∈ [0,∞).

ii) ‖A 1
2 z (0) ‖ = 0.

Let z1k = λkz1, λk = 1− 1
k
, k = 2, 3, .... . Next, we consider

ztt +Az = |z|q−1z, (x, t) ∈ Ωx (0,∞) ,
∂iz(x,t)
∂vi

= 0, i = 0, 1, ...,m− 1, (x, t) ∈ ∂Ωx [0,∞) ,
z (x, 0) = z0 (x) , zt (x, 0) = z1k (x) , x ∈ Ω.

(15)
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In this case, due to the fact that J1 (z0) = 0 and 1
2
‖z1‖2 = E (0), we obtain

0 < Ek (0) =
1

2
‖z1k‖2 + J1 (z0) =

1

2
‖λkz1‖2 < E (0) = d (δ) .

Thus it follows from Theorem 6 that, for each k, problem (15) admits a solution
zk (t) ∈ Wδ for all t ∈ [0,∞) . The remainder of proof is similar to that in (i).
The proof of is complete.

Theorem 4.5 Suppose that z be a solution of problem (1) on Ω × [0, T ) .
Suppose further that z0 ∈ Vδ, z1 ∈ L2 (Ω) , E (0) = d (δ) and (z0, z1) ≥ 0.
Then z (t) ∈ Vδ for all t ∈ [0, T ) .

Proof 4.6 Assume that z (t) /∈ Vδ for some 0 < t < T . Then we see from
z0 ∈ Vδ that there exists the first time 0 < t0 < T such that z (t0) ∈ ∂Vδ. Hence

‖A
1
2 z (t0) ‖ =

[
2 (q + 1)

q − 1

d (δ)

δ

] 1
2

(16)

and

‖A
1
2 z (t) ‖ >

[
2 (q + 1)

q − 1

d (δ)

δ

] 1
2

, ∀t ∈ [0, t0) . (17)

By (16) and (ii) in Lemma 1, we obtain

δ‖A
1
2 z (t0) ‖2 ≥ ‖z (t0) ‖q+1

q+1

Hence

Jδ (z (t0)) =
δ

2
‖A

1
2 z (t0) ‖2 − 1

q + 1
‖z (t0) ‖q+1

q+1

≥ (q − 1) δ

2 (q + 1)
‖A

1
2 z (t0) ‖2

= d (δ) . (18)

Set
K (t) = ‖z‖2, t ∈ [0, T ) .

A direct calculation yields

K ′ (t) = 2 (z (t) , zt (t)) .

From E (0) = d (δ) , (10) and (17), it follows that K ′′ (t) > 0 for t ∈ [0, t0).
Hence K ′ (t) is increasing on [0, t0]. We further get K ′ (t0) > K ′ (0), which,
together with K ′ (0) = (z0, z1) ≥ 0 , gives K ′ (t0) = (z (t0) , zt (t0)) > 0. Thus

‖z (t0) ‖.‖zt (t0) ‖ ≥ ((z (t0) , zt (t0))) > 0,

E (t0) =
1

2
‖zt (t0) ‖2 + J1 (z (t0)) = E (0) = d (δ) ,

we get J1 (z (t0)) < d (δ) , which contradicts (18). Therefore, z (t) ∈ Vδ for all
t ∈ [0, T ) .
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4.2 Blow up when E (0) = d (δ)

Theorem 4.7 Suppose that z0 ∈ Vδ, z1 ∈ L2 (Ω) , E (0) = d (δ) and (z0, z1) ≥
0. Then the solutions of problem (1) blow up in finite time.

Proof 4.8 Let z be a solution of problem (1). Next, we prove T <∞. If it is
not true, then T = ∞. From z0 ∈ Vδ, (z0, z1) ≥ 0 and Theorem 8, it follows
that z (t) ∈ Vδ for all t ∈ [0,∞) . Hence

‖A
1
2 z (t) ‖2 >

2 (q + 1)

q − 1

d (δ)

δ
.

Combining this with E (0) = d (δ) , we have

δ (q − 1) ‖A
1
2 z (t) ‖2 > 2 (q + 1) d (δ)

= 2 (q + 1)E (0) .

Hence, for K (t) introduced in the proof of Theorem 8, it follows from (10) that

K ′′ (t) > (q + 3) ‖zt (t) ‖2,

for a.e. t ∈ [0,∞) . The remainder of proof is the same as that in Theorem 5,
and so it is omitted here.

5 Open problems

In the present work we proved the global existence and blow up of solutions for
problem (1) using the potential well method under subcritical (E (0) < d (δ))
and critical (E (0) = d (δ)) energy. The asymptotic behavior of the problem
can be studied. Additionally, the global existence can be examined for E (0) >
d (δ) .
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