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Abstract

In this work, we deal with the higher-order hyperbolic-type
equation. Firstly, we prove the global existence and blow up of
solutions with the subcritical initial energy. Later, we prove
the global existence and blow up of solutions with the critical
initial energy.
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1 Introduction

In this work, we are concerned the following higher-order hyperbolic type equa-
tion

zy + Az = Elka r €N, t>0,

Pewl) — 0, 1 =0,1,..,m—1,  x€dQ, t>0, (1)

z(;, 0) = z0(x), 2z (x,0) =2 (), €

where A = (=A)"™, m > 1 is a natural number, Q is a bounded domain

with smooth boundary 092 in R™ (n > 1), so that the divergence theorem can

be applied, &ft) denotes the i—order normal derivation of z and v is unit
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outward normal vector on 9€2. The power index ¢ of the source term satisfies.

1 <qg< oo, n < 2m,
l<g< —"L—=, n>2m.

n—2m?’

In [12], Vitillaro considered the local existence, global existence and blow up
of solutions with nonlinear boundary condition for the following wave equation

2 — Az = |2|7 " 2.

In [14], Yacheng studied the potential wells of solutions for the following
wave equation
Z2 — Az = 2|7 2

Later, Liu and Li [4] studied the global existence and blow up of solutions with
the subcritical and critical initial energy for the same equation.

After that many authors [1, 2, 3, 9, 10, 11] considered the existence and
blow up of solutions of the problem for various nonlinear PDE by using the
potential well method.

We focus on a family of new potential wells and their applications to higher-
order hyperbolic-type equation (1). The potential well was introduced by
Payne and Sattinger [6] and Sattinger [7]. The main purpose of this work is to
construct a family of new potential wells and their outside sets by modifying
the depths of the potential wells for the higher-order hyperbolic-type equation
inspired by [4, 13].

In several mathematical models, we face higher-order partial differential
equations (PDE). For example, it can be found in fluid dynamics, electromag-
netism, biology, mechanics and image processing, here 3-dimensional problems
are represented on the surfaces, for instance in the case of thin geometries,
modeled as membranes, plates or shells, depending on the structure of the
original domain. This leads to defining surface partial differential equations
which often involve high-order differential operators [8].

The outline of this work is as follows: In part 2, we define the potential
wells for our problem. In part 3, we prove the global existence and blow up of
solutions with the subcritical initial energy (£ (0) < d(d)). In part 4, we prove
the global existence and blow up of solutions with the critical initial energy
(E(0) = d(5)).

In this work, we denote

e = IHloceys 1= IHll2s (200) = / vods.

2 Setup of potential wells

In this section, we define the potential wells for our problem.
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2.1 Potential wells family and their depths

We define the energy functional as
1 2 Lyl o 1 +1
E(t) = §Hzt|l + §||A22|| - q+—1”2| ey
which satisfies the energy identity
E(t) = E(0)

for all t > 0. Also, we define the auxiliary functional

5 1 1
Js (2) = 5”.,42;;“2 _ H_luzugi}, 0<d<1.

Now, we are able to define the depths of the potential wells
d(6) = max gs(y),
y€[0,00)

here )
y = [JAzz|,
5, 1
— _ _ g+1, g+1
95 (¥) L G

and c is the best constant for the Sobolev embedding from H{" (Q) into L™ ().
Let g5 (y) = 0, then

Ys = 5ﬁc_<%}). (2)
From here .
TN et B g ey
d(6) = = ——fa1 1/, 3

By using the (2) and (3), we have

Like this, we can define a family of potential wells
Wy = { ey @)1 4ks] < [2 (157) d(‘”]é},

and their outside sets

Vs = {zeHa“ @1 i) > [2(45) @]}

It is obvious

oWy = OV — {z € HI' ()] [|A22]| = {2 (f]f—l) @} %} |
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Lemma 2.1 Assume that z € HJ" (12).
i) If 2 € Ws and ||A3z|| £ 0, then 6||Az2|)> > ||2]|¢1].
ii) If = € OW;, then §||Azz|2 > ||z||%H.
iii) If || Az 2% < ||z||2E1, then 2 € V.

27

iv) I 8] A3 2|2 = [|2]1953 and [A3z]| £ 0, then = € Hy (Q)\ W = V;UVs.

Proof 2.2 i) Since z € Ws, we obtain
1
1 g+1\d()]?
o (L) 2/
ksl < 2 (251) 22,

which, together with (3), we have

a+1

|A2z|| < 7T o,

From here
1
§ > | Azl

Since || Az z|| # 0, multiplying the above inequality by || A2z|2, we get

Ol A2 27 > ¢ A2z,
and so
1
2]|451 < 6]|Az 2|,
i) From z € OW;5 we get
2(q+1)d(5)}2

Az z]| = [q——lT

Similarly to (i), we have
205 < oll A=z

iii) Taking into account ||Azz|| # 0, we have

1
Sl Azz))* < 24y
< A3t
thus
1
5 < | Az 2|3

We further get
a+1

|A2z|| > T T o,
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Combining this with (3), we get

2(q+1)d(5)r
1 o | -

JA3z] > [f—
q

Hence z € V.
iv) By the proof of (iii) we know that 8| A2z|? = HZHZE and ||Azz||2 £ 0
imply

bz > {—2 asn dgﬂ y

Hence z € HJ* (Q) \ W5 = Vs U 0Vj.

2.2 Invarience of the potential wells and their outside
sets

In this part, we show that Wy and Vs are both invariant under the flow of
problem (1) with the subcritical inital energy.

Definition 2.3 Function z = z (x,t) is called a weak solution of problem (1)
over Q x [0,T), if z € L= (0, T; H (), 2z € L* (0,T; L* (), satisfying
i) for allv € HJ* () and a.e. t € [0,T)

(2 (t),v) + /Ot (A%z (t) ,A%) dr = (z1,v) + /Ot (\z (1) |7 2 (1) ,v) dr, (4)

ii) 2(0) = 20 € HI' (), 2 (0) = 21 € L (Q).

Theorem 2.4 Suppose that z be a solution of problem (1) on Q x [0,T).
Assume further that = € HJ* (), z1 € L? () and 0 < E (0) < d(9).

i) If zg € Ws, then z (t) € Ws for allt € [0,T).

ii) If zo € Vs, then z (t) € Vs for allt € [0,T).

Proof 2.5 i) Suppose that z (t) ¢ W5 for some 0 <t <T . Then we see from
20 € Wy that there exists the first time 0 < to < T such that z (to) € OWs.
Thus
2(q+ 1)(1(5)}2

| A2z (to) || = {q——lT
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Consequently, from item (ii) of Lemma 1 that
d, 1 1
Js (2 (to)) = §||AQZ (to) II” — m”z (to) 1113

= E—L % 2 1 % 2 q+1
= 5(2 +1)HA 2 (00) 7+ g (01432 (1) I ~ 12 (1) 111

(q ) 2
= d(d )
This contradicts

E(0) = B ()= gz (0) |+ (= (1) <d(8), ¥ € 0,7).

Hence z (t) € Wy for allt € [0,T).

ii) Arquing by contradiction, suppose that ty € (0,T) is the first time such
that z (to) € OVs. The remainder of proof is the same as that in (i), and so it
1s omitted here.

3 Problem (1) with the subcritical initial en-
ergy (E(0) <d(d))

In this section, we proved the global existence and blow up of solutions for
problem (1) with the subcritical initial energy.

3.1 Global existence when 0 < E (0) < d(0)

In this part, we proved the global existence of solutions for problem (1).

Theorem 3.1 Suppose that zg € Wy, z1 € L*(Q) and 0 < E(0) < d(9).
Then problem (1) admits a solution z (t) € Ws for all t € [0, 00).

Proof 3.2 Let {w;}2, be a completed orthogonal basis of Hg"(S2) and an
orthonormal basis of L* (Q). We construct the approzimate solution

= &ut)w;, n=123,..,
j=1
solving the problem

(o (£) 07) + (A2 (1), Ay ) = (Joa () [T 20 (8) ), G =1,2,3,0m
(5)
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20 (0) =Y & (0)w; = 20 € HY' (), (6)
j=1
2t (0) =) &, (0)w; — 21 € L*(Q). (7)
j=1
Multiplying eq. (5) by &, (t) and summing for j, we obtain
d (1 g 1 1 2 1 g+1) _
i (Gl P+ 51455 O - =l @) 0. @)

Integrating (8) with respect to t on [0,t], we arrive at

1 1, 1 1
E. () = glleu O + 5155 O - <l @ 5 = B.0)  ©)

where

1 2, L4t 2 1 +1
B, (0) = 520 (0) 1+ 514320 0) P = — 1l (0) 551
Recalling (6) and (7) yields E, (0) — E(0), 0 < E,(0) < d(5) and z,(0) €
W for sufficiently large n. By similar arguments in (i) of Theorem 3, we get
2, (0) € W5 for allt € [0,00). As a result

o< [PEDIE]
and
o0 () ler < cll Az, (0] < ¢ |22 ED] vt e p.oo),

When, || A2z, (t) || # 0 , in terms of (i) in Lemma 1 and (9), we get
20 (1) []* < 2d (8), Vt € [0,00).

When || A2z, () || = 0, by means of (9), the above inequality remains valid.
Therefore, there exist z, X and a subsequence of {z,}, always relabeled as
the same and we shall not repeat, such that, as n — oo,

zp — z weakly star in L™ (0,00; Hi* (), and z, — z a.e. in 2 x [0,00),

Znt — 2z weakly star in L™ (O, o0; L (Q)) ,

1
20|97 2 — X weakly star in L™ (0,00; L™ (Q)), r = e+l
q
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According to [5] (Chapter 1, Lemma 1.3), we get X = 2|71z,
For fized j, integrating (5) with respect to t and taking n — oo, we obtain

(z¢ (1) ,w;) + /Ot (A%z (1) ,A%wj> dr = /Ot (|z (7) |97 2 () ,wj) dr + (21, w;) .

Also, it is easy to see from (6) and (7) that z (0) = zo in H* (2), 2 (0) = 21 in
L?(Q). Consequently, z is a solution of problem (1) in the sense of Definition
2. In addition, according to (i) in Theorem 3, we get z (t) € Wy for all t €
0, 00) .

3.2 Blow up when £ (0) < d(9)
In this part, we proved the blow up of solutions for problem (1).

Theorem 3.3 Suppose that zy € Vs, 21 € L*(Q) and E(0) < d(8). Then
solutions of problem (1) blow up in finite time.

Proof 3.4 Let z be a solution of problem (1). Now, we prove T' < oo. If it is
not true, then T' = oo. We define the auxiliary function

K (t) = ||z]|*, t € [0,00).

Then by taking the derivative of K (t), we obtain

K'(t) = Q/zztdx,
and

K"(t) = 2/ 27 + 224 da
1
= 2flzl® + 22181 — 2/l A22|
= (q+3)|zl>+ (g=1) || 422> =2 (¢ + 1) E (0) (10)

When 0 < E (0) < d(0), by virtue of zo € Vs and (ii) in theorem 3, we get
z(t) € Vs for allt € [0,00) and so

1o 2(g+1)d(9)
|Azz||* > 1 5

Hence

(q—1)8]A22]* > 2(q+1)d(d)
> 2(¢+1)E(0),
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which together with (10), gives
K" (t) > (q+3) ||l

When E (0) < 0, on account of (10), the above inequality still holds. Therefore,
there exists a to > 0 such that K (to) > 0 and K'(t) > K'(tg) > 0 for a.e.
t € [to,00). Then

K (1) > K (to) (t —to) + K (to) > 0, L€ [ty,00).

Thans to Cauchy-Schwarz inequality, we have

K0 K" (1)~ TR 0F > (g4 3) [P0~ (2207 2 0
Thus
(K7 (1)] = —BK~0 (1) K (1) < 0,
and
_ " -3 7 / 2
(K 0] = gy K OK" ()= (8+ DK @] <0

for a.e. t € [ty,00) , where f = q%‘tl. Then there exists a Ty such that

which conradicts T' = oo. Thus, the proof is complete.

4 Problem (1) with the critical energy (£ (0) =
d(9))

In this section, we proved the global existence and blow up of solutions for
problem (1) with the critical initial energy.

4.1 Global existence when E (0) = d (6)

Lemma 4.1 Suppose that = € HI(Q) and ||Azz|| # 0. Js(pz) is strictly
increasing for p € (0, pss), strictly decreasing for p € (p.s,00), and attains
the mazimum at p = pss.

Proof 4.2 By the definition of Js (z), we get

o, 1 1
Js (pz) = §||A2 (p2)|I* — m”ﬂzﬂgﬁ

= §Pz||v422|’2 - mHZHgL-
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Thus p
& (Js (p2)) = dpll A2z — p|1 2117

Clearly, there is a p.s = pss(z) > 0 such that
1 _
Ol A2 2|1 = pZ5t 20185,

1.€.,
d

dp (J5 (p2))

Moreover, 7 (J5 (pz)) > 0 for p € (0, pus), 15 (J5 (p2)) <0 for p € (pas,00) .

= 0.

Px,8

Theorem 4.3 Assume that 2o € Ws, z1 € L*(Q) and E(0) = d(5). Then
problem (1) admits z (t) € Ws = Ws U 0W; for all t € [0, 00).

Proof 4.4 We will prove it in two cases.

i) | A3 2| # 0.

Let zor. = Mpzo,here N\, = 1—%, k=2,3,.... Now, we consider the following
problem
2+ Az = [2]771, (x,t) € 2 x (0,00)
P — 0, 1=0,1,...,m —1, (z,t) € 09 x [0, 00) (11)

2 (x,0) = zor (), 2 (2,0) =21 (x), x€Q
whose energy functional s

1 1 1 1
By (t) = §szt\|2 + §H¢42zk\|2 - m!\zk!\iﬁi}-

From zy € W5 and Lemma 1 it follows that
1
Ol A2 201> > (|20l 213, (12)

Thus )
Ol Az zo|* > A 20]l871,

and so )
S| A2 2o 1> > [l 2ol 255

Which implies that

O, (1 1
Ty (20) = A% o) I = el > 0.

It follows from (12) and the proof of Lemma 6 that there exists a p.s =
prs(20) > 1 such that Js (pzo) attains its mazimum. Thus, according to Lemma
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6, Js(pzo) is strictly increasing on [\, 1], and Jy (Arz0) < Ji(20). Conse-
quently,

1

= §||21||2 + J1 (20)
1

< §HZ1||2 + J1 (20)

— E(0)
— d(o).

In terms of Theorem 4, for each k problem (11) admits a solution z (t) € W
for all t € [0,00) satisfying

(2 (1) ,0) + /Ot (Aézk (r) ,A%v) dr = /Ot (12 (7) |7 2 (7) ,0) d7 + (21,0)

(13)
for all v e HI* (). Consequently,
4 ()] < |2EDLON vt e o,oo). (1)

When || A2z (t) || # 0, in terms (i) of Lemma 1 Ej, (t) = Ex (0) < d(9),
we get
2k (8) I < 2d(3), ¥t €[0,00).

When || A2z (t) || = 0, the above inequality still holds. By the compactness
arguments used by the proof of Theorem 6, there exists a z such that, as k — oo

in (13),

(2 (t),v) + /Ot (.A%z (1) ,A%v> dr = /Ot (|2 (1) 1" 2 (1), v) dT + (21, 0).

Moreover, it follows from (11 ) that z(0) = zo in H*(Q), 2.(0) = 2z in
L% (Q) . Therefore, z is a solution of problem (1). By virtue of (14), we obtain

1
2 1 2
|AZz (1) | Srii_rgoianA%zk ) < [%@} , Yt €[0,00).
Hence z (t) € W for all t € [0, 00).
i) |42z (0) || = 0.
Let 21 = Mgz, Ap=1— %, k=2,3,..... Next, we consider
2y + Az = 2|77z, (x,t) € Qx(0,00),
P2 — 0, §=0,1,...,m — 1, (z,t) € 00z [0, 00) (15)

2 (2,0) =z (x), 2z (2,0) = 215 (), x €
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In this case, due to the fact that Ji (z9) = 0 and 1||z1]|* = E(0), we obtain
1 1
0 < B (0) = Sllz1ll” + 1 (20) = Sl Aezll* < E(0) = d(9).

Thus it follows from Theorem 6 that, for each k, problem (15) admits a solution
2 (t) € Wi for allt € [0,00). The remainder of proof is similar to that in (i).
The proof of is complete.

Theorem 4.5 Suppose that z be a solution of problem (1) on £ x [0,T).
Suppose further that zg € Vs, z; € L*(Q), E(0) = d(0) and (z9,21) > 0.
Then z (t) € V5 for allt € [0,T).

Proof 4.6 Assume that z (t) ¢ Vs for some 0 <t < T . Then we see from
29 € Vs that there exists the first time 0 < to < T such that z (ty) € OVs. Hence

@+nwar

Ak (1) | = | 2D 40 (10

and .
! 2 1)d(d)|?
43201 > [ LONE e o). (17
g—1 0
By (16) and (ii) in Lemma 1, we obtain

Ol A=z (to) I* > 1|2 (to) 551

Hence
bu%»::ﬂmaa@W—;Lwammﬁ
=05, 1 e
> St )|
= (). (18)
Set

K (t) = |]2]]*, t € [0,T).
A direct calculation yields
K'(t)=2(2(t), 2 (1))
From E (0) = d(0), (10) and (17), it follows that K" (t) > 0 for t € [0,1).

Hence K’ (t) is increasing on [0,ty]. We further get K'(ty) > K'(0), which,
together with K' (0) = (z0,21) > 0, gives K' (ty) = (2 (to) , 2 (to)) > 0. Thus

I (o) 1.2 () ) > (= (1), 2 (50))) >0,
E (1) = gllz (t0) I° + 1 (= (1)) = E1(0) = d 4).

we get Jy (z (tg)) < d(6), which contradicts (18). Therefore, z (t) € Vs for all
tel0,7).
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4.2 Blow up when F (0) = d(0)
Theorem 4.7 Suppose that zg € Vs, z1 € L* (), E(0) =d (3) and (29, 21) >
0. Then the solutions of problem (1) blow up in finite time.

Proof 4.8 Let z be a solution of problem (1). Next, we prove T' < oo. If it is
not true, then T' = oo. From 29 € Vs, (20,21) > 0 and Theorem 8, it follows
that z (t) € Vs for allt € [0,00). Hence

1 2 2(qg+1)d(9)
[Azz (t) || >ﬁ7-

Combining this with E (0) = d (6), we have
Sla=D A > 2(g+1)d ()
= 2(g+1)E(0).
Hence, for K (t) introduced in the proof of Theorem 8, it follows from (10) that
K" (t) > (¢ +3) [z (1) 1%,

for a.e. t € [0,00). The remainder of proof is the same as that in Theorem 5,
and so it is omitted here.

5 Open problems

In the present work we proved the global existence and blow up of solutions for
problem (1) using the potential well method under subcritical (E (0) < d(6))
and critical (£ (0) = d(0)) energy. The asymptotic behavior of the problem
can be studied. Additionally, the global existence can be examined for £ (0) >
d(9).
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