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Abstract

In this survey we gather several results related to the set of
m-subharmonic functions and m-positive currents. We focus
on recent studies of the Hessian operator acting on the set of
m-subharmonic functions as well as the same operator when
it is associated to an m-positive closed current.

Keywords: m-subharmonic function, currents, Capacity, Hessian opera-
tor.

2010 Mathematics Subject Classification: 32U05; 32U15; 32U20;
32W20.

1 Introduction

In this survey we fix Ω to be an open subset of Cn and m an integer such
that 1 ≤ m ≤ n. The notion of plurisubharmonic functions (psh) represents
multidimensional generalizations of subharmonic functions (sh). It is therefore
not surprising that these two classes of functions share many similar proper-
ties. However there are several properties that make a psh function different
from an sh function, namely the property of symmetry: the notion of plurisub-
harmonicity is stable by change in holomorphic coordinates which is not the
case for sh functions on Cn for n > 1. Also the Liouville type property shows
that there is a difference between the two notions already cited. Indeed it
is known that a psh function is bounded on Cn if and only if it is constant
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and this is not the case for sh functions in higher dimensions. The notion of
m-subharmonic function (see [4], [28, 27]) interpolates between subharmonic-
ity and plurisubharmonicity. The corresponding nonlinear potential theory
is therefore expected to share the joint properties of the potential and the
pluripotential theory. Indeed in the works of Li [26], Blocki [4], Chinh [28],
Dhouib and Elkhadhra [13], Dinew and Kolodzeij [14] and many others the
m-subharmonic potential theory (m-sh) has been fully developed. For every
locally bounded m-sh function u, Li [26] and Blocki [4] defined the Hessian
operator of u as

Hm(u) := (ddcu)m ∧ (ddc|z|2)n−m.

The operator Hm generlizes the Monge-Ampère operator when m = n and
in this case the operator was extensivly studied by Bedford and Taylor [1],
Demailly [12] and Cegrell [5, 6].
For a given non negative measure µ defined on Ω one can study the following
Hessian equation on the set of msh functions:

Hm(.) = µ (E1).

The Hessian equation coincides in the case m = 1 with the Poisson equa-
tion and with the Monge-Ampère equation when m = n. Unlike complex
Monge-Ampère equations, where the eigenvalues of the associated operator
are positive, complex Hessian equations are more dicult to manipulate. The
m-subharmonic functions do not have ”nice” mean value properties. They are
not invariant by holomorphic maps.
Real Hessian equations have been studied intensively in recent years with nu-
merous applications (see [29] and its references). Blocki [4] developed the first
elements of a local potential theory for the Hessian equation on an open set of
Cn analogous to Bedford and Taylor [1]. This survey is organized as follows:
In the first part we recall basic properties of several classes of m-subharmonic
functions as well as necessary elements of pluripotential theory. In the second
part we summarize different results on solving the equation (E) when it is
associated to a weight χ. So we present several recent results in [19, 33, 20]
where we studied a general version of the complex Hessian equation on an m-
hyperconvex domain of Cn. This equation was the objective of different studies
not only because it represents an example of a partial differential equation but
also because it has many applications in several geometric problems. It con-
sists of looking for a solution, in the set of functions m-sh, of the following
equation

−χ(.)Hm(.) = µ (E)

where µ is a measure defined on Ω and χ a negative increasing function de-
fined on R−. The objective was then to find sufficient conditions on µ and χ
ensuring the existence of a solution for the equation (E).
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The search for such a solution must obviously be done in the domain of defi-
nition of the operator χ(.)Hm(.). So it is trivial to involve the complex energy
classes defined by Benelkourchi, Guedj and Zeriahi [3] and generalized by V.V.
Hung [22], namely the classes Em,χ(Ω) and Eχ(Ω).
In the special case χ ≡ −1, the equation (E) is exactly the equation (E1)
which was solved by Lu [28] under the assumption that the measure µ has no
mass on all m-polar sets. This problem was improved by V.V. Hung and N. V.
Phu [23] by demonstrating that if µ is a finite Radon measure and if (E1) has
a subsolution then there exists a solution u to the equation (E1) that belongs
to Em(Ω).
In the case where χ is not identically equal to −1 but m = n, Czyz [10] has
proven the existence of a solution to the equation (E) belonging to the class
Eχ(Ω). Here we treat the general case when m 6= n and χ not identically equal
to −1.
Finally we will study a more general case when we associate to every m-
positive current its Hessian equation and we give sufficient condition to ensure
the existence of its solution. The main results of this section may be found in
recent work of [17, 18]. We recall first the classes analogous to those of Ce-
grell ET0,m(Ω) and ETp,m(Ω) which generalize the classes given by Lu [28]. Using
techniques similar to those of Cegrell [5, 6] we proved in [17] that the operator
(ddc.)q ∧ T is well defined on the class ETp,m(Ω). As the operator is now well
defined we moved on to treating its properties all while drawing inspiration
from the properties that the classical Monge-Ampère operator had. In this di-
rection we cite several recent result related to the problem of quasicontinuity
of any function u ∈ ETp,m(Ω). We then prove that any function u ∈ ETp,m(Ω) is
Capm,T−quasicontinuous.
The end of this section will be devoted to study m-positive currents in the
sense of Dhouib and Elkhadhra [13] where we discuss some theorems of con-
vergenceof the Hessian measures in this case.

2 Preliminaries

This section is devoted to recall some basic properties of m−subharmonic
functions that represent admissible functions for the complex Hessian equation.
Throughout this paper we denote by d := ∂ + ∂ and dc := i(∂ − ∂). The
standard Kähler form defined on Cn will be denoted as β := ddc|z|2 and
we will denote by C(1,1) the set of all forms of bidegres (1, 1) with constant
coefficients. Set

Γ̂m := {α ∈ C(1,1);α ∧ βn−j ≥ 0; ∀j ∈ {1, ...,m}}.

Definition 2.1 Let f : Ω → R ∪ {−∞} be a subharmonic function. The
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function f is called m-subharmonic if for all ζ1, · · · , ζm−1 ∈ Γ̂m(Ω) one has

ddcf ∧ ζ1 ∧ · · · ∧ ζm−1 ≥ 0.

We denote by SHm(Ω) the cone of m−subharmonic functions defined on
Ω. We cite below basic properties of m-subharmonic functions where its proofs
can be found in [4], [24],[28] and [27].

Remarks 2.2 1. The set SHn(Ω) coincides with the set of plurisubhar-
monic functions on Ω.

2. If u, v ∈ SHm(Ω) then λu+ µv ∈ SHm(Ω),∀λ, µ > 0.

3. PSH(Ω) = SHn(Ω) ⊂ · · · ⊂ SHm(Ω) ⊂ · · · ⊂ SH1(Ω) = SH(Ω).

4. If u is m-subharmonic on Ω then the standard regularizations u ∗ χε are
also m−subharmonic on Ωε := {x ∈ Ω / d(x, ∂Ω) > ε}.

5. If (ui)j is a decreasing sequence of m−subharmonic functions then u :=
limuj is either m−subharmonic or identically equal to −∞.

One can construct an example of m-sh subharmonic which is not (m + 1)-sh.
It suffices to consider the function

f(z) := 2|z1|2 + 2|z2|2 − |z3|2 for z ∈ C3. Indeed it is easy to check that
f ∈ SH2(C3) \ SH3(C3).

In the case of locally bounded m-sh functions, one can define, by induction,
a closed nonnegative current in the same manner as Bedford and Taylor [1]
have defined it for plurisubharmonic functions

ddcf1 ∧ . . . ∧ ddcfk ∧ βn−m := ddc(f1dd
cf2 ∧ . . . ∧ ddcfk ∧ βn−m),

where f1, . . . , fk ∈ SHm(Ω)∩L∞loc(Ω). In particular, for a given m−sh function
f ∈ SHm(Ω) ∩ L∞loc(Ω), we define the nonnegative Hessian measure of f as
follows

Hm(f) = (ddcf)m ∧ βn−m.

2.1 Cegrell classes of m-sh functions and m−capacity

Definition 2.3 1. A bounded domain Ω in Cn is said to be m-hyperconvex
if the following property holds for some continuous m-sh function ρ :
Ω→ R−:
{ρ < c} is relatively compact in Ω for every c < 0.

2. A set M ⊂ Ω is called m−polar if there exists u ∈ SHm(Ω) such that

M ⊂ {u = −∞}.
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Throughout the rest of this survey, we denote by Ω an m-hyperconvex domain
of Cn. In [5] and [6], Cegrell introduced and studied new fundamental classes
of negative psh functions to extend the domain of definition of the Monge-
ampère operator. Such classes are very useful in the resolution of the Dirichlet
problem. To generalize the above classes, Lu [28, 27] introduced the following
classes of m-sh functions that coincides in the case m = n with the Cegrell’s
one. We recall below the definitions of those classes.

Definition 2.4 We denote by:

E0
m(Ω) := E0

m = {f ∈ SH−m(Ω)∩L∞(Ω); lim
z→ξ

f(z) = 0 ∀ξ ∈ ∂Ω ,

∫
Ω

Hm(f) < +∞},

Fm(Ω) = Fm = {f ∈ SH−m(Ω); ∃(fj) ⊂ E0
m, fj ↘ f in Ω sup

j

∫
Ω

Hm(fj) < +∞},

and

Em(Ω) := Em = {f ∈ SH−m(Ω) : ∀U b Ω,∃ fU ∈ Fm(Ω); fU = f on U}.

2.2 Energy Complex classes

Definition 2.5 A function f ∈ SHm(Ω) is said to be m-maximal if for every
g ∈ SHm(Ω) such that g ≤ f outside some comapct of Ω one has that g ≤ f
in Ω.

The previous notion represents an essential tool in the study of the Hessian
operator since Blocki [4] proved that every m-maximal fucntion f ∈ Em(Ω)
satisfies Hm(f) = 0 and consequently it is a solution of the homogeneous
complex Hessian equation. We then recall the construction of the m-maximal
functions.
Let (Ωj)j be a sequence of m-pseudoconvexes subsets of Ω such that Ωj b Ωj+1,
∞⋃
j=1

Ωj = Ω and for every j there exists a smooth strictly m-sh function ϕ in a

neighborhood V of Ωj such that Ωj := {z ∈ V/ϕ(z) < 0}.

Definition 2.6 Let f ∈ SH−m(Ω) and (Ωj)j the sequence defined above. Con-
sider f j the function defined by:

f j = sup
{
ψ ∈ SHm(Ω) : ψ|Ω\Ωj

≤ f
}
∈ SHm(Ω),

and denote by f̃ := ( lim
j→+∞

f j)∗, the function f̃ is the smallest m-maximal m-sh

majorant of f .
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If f ∈ Em(Ω) then using [27] and [4] f̃ ∈ Em(Ω) and is m-maximale on Ω. We
will denote by MSHm(Ω) the set of all m-maximal functions in Ω.
We cite below some fundamental properties of MSHm(Ω).

Proposition 2.7 [4] If f, g ∈ Em(Ω) and α ∈ R, α ≥ 0, then

1. f̃ + g ≥ f̃ + g̃.

2. α̃f = αf̃ .

3. If f ≤ g then f̃ ≤ g̃.

4. Em(Ω) ∩MSHm(Ω) = {f ∈ Em : f̃ = f}.

In [22], author introduce the class Nm(Ω) := {f ∈ Em : f̃ = 0} which is equal,
when m = n, to the Cegrell class N (Ω) defined and studied in [6]. It is easy
to check that Nm(Ω) is a convex cone and that the following inclusions hold

E0
m(Ω) ⊂ Fm(Ω) ⊂ Nm(Ω) ⊂ Em(Ω).

Definition 2.8 Let Lm ∈ {E0
m,Fm,Nm} and u ∈ Em(Ω). A function f ∈

SHm(Ω) belongs Lm(Ω, u) (Lm(u)) if there exists a function ψ ∈ Lm such that
u ≥ f ≥ ψ + u.

In the case when u = 0, we get Lm(u) = Lm. For u ∈ Em(Ω), one can defined
the classes

N a
m(Ω) := {f ∈ Nm : Hm(f)(P ) = 0, ∀P m− polar}},

and
N a
m(Ω, u) := {f ∈ Em / ∃ψ ∈ N a

m tel que u ≥ f ≥ ψ + u} .

3 Main results: Hessian equations acting on

weighted classes

3.1 The class Em,F (H,Ω)

Throughout this section we consider F : R− ×Ω −→ R+ and µ a nonnegative
measure defined in Ω. We will study the following equation

Hm,F (.) = µ (∗)

where Hm,F (u) := F (u(z), z)Hm(u). To simplify notations authors in [19]
introduced

C(R−) := {χ : R− −→ R−;χ is continuous, increasing and χ(t) < 0 ∀t < 0}

and

D(R−,Ω) := {F : R−×Ω −→ R+; ∀z ∈ Ω the function F (., z) is decreasing in R−}.
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Definition 3.1 For F ∈ D(R−,Ω) and H ∈ Em(Ω) ∩ MSHm(Ω) one can
define

Em,F (H,Ω) := {ϕ ∈ Nm(H) : ∃ E0
m(H) 3 ϕj ↘ ϕ,

sup
j≥1

∫
Ω

Hm,F (ϕj) < +∞}.

To deal with the equation (∗) author in [19] proved firstly the following result
named as the comparison principle which generlizes basic version of comparison
principle in [1, 5, 22]. Namely they proved the following result

Theorem 3.2 [19] Let F ∈ D(R−,Ω), u ∈ N a
m(H) and v ∈ Em(H). If

Hm,F (u) ≤ Hm,F (v) then u ≥ v.

Based on this result Hbil and Zaway [19] gave a technical demonstration
allowing them to solve the equation (∗) when the measure µ is assumed to be
finite and does not charge any m-polar set. The complete statement of this
result appears in the following theorem

Theorem 3.3 [19]
Assume that the measure µ is finite with no mass on every m-polar subset

Ω and suppose that inf
z∈Ω

F (t, z) > 0,∀ t < 0. Then there exists a function

u ∈ Em,F (H,Ω) such that Hm,F (u) = µ. Moreover u is unique.

3.2 Hessian equation on the class Em,χ(Ω)

Throughout this section χ : R− → R− will be an increasing function. In [22]
Hung introduced the class Em,χ(Ω) to generalize the fundamental weighted
energy classes introduced firstly by Benelkourchi, Guedj, and Zeriahi [3]. Such
class is defined as follows:

Definition 3.4 We say that f ∈ Em,χ(Ω) if there exits (fj)j ⊂ E0
m(Ω) such

that fj ↘ f in Ω and

sup
j∈N

∫
Ω

(−χ(fj))Hm(fj) < +∞.

Remarks 3.5 It is clear that the class Em,χ(Ω) generalizes all analogous Ce-
grell classes defined by Lu in [28] and [27]. Indeed

1. Em,χ(Ω) = Fm(Ω) when χ(0) 6= 0 and χ is bounded.

2. Em,χ(Ω) = Epm(Ω) in the case when χ(t) = −(−t)p.

3. Em,χ(Ω) = Fpm(Ω) in the case when χ(t) = −1− (−t)p.
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If we take m = n in all the previous cases we recover the classic Cegrell classes
defined in [5] and [6].

Note that in the case χ(0) 6= 0 one has that Em,χ(Ω) ⊂ Fm(Ω) so the Hessian
operator is well defined in Em,χ(Ω) and is with finite total mass on Ω. So in
the rest of this study we will always consider the case χ(0) = 0.

In [20] authors prove that the Hessian operator is well defined on Em,χ(Ω).
Note that this result was proved also in [22] but with an extra condition
(χ(2t) ≤ a.χ(t)) and in [20] we omit that condition and the proof of such
result was completely different.

Theorem 3.6 [20] Assume that χ 6≡ 0. Then

Em,χ(Ω) ⊂ Em(Ω).

So for every f ∈ Em,χ(Ω), Hm(f) is well defined and −χ(f) ∈ L1(Hm(f)).

In this part we will focus on the Hessian equation acting on Em,χ(Ω). The
question is to find a sufficient condition to ensure the existence of a solution
to the following equation

−χ(u)Hm(.) = µ (∗∗)

in the class Em,χ(Ω) where µ is a nonnegative measure in Ω. In the particular
case when χ is identically equal to −1 the question was solved by [22]. To give
a positive answer to the previous question Hbil and zaway [33] used to work
in the case when χ ∈ C(R−):

Theorem 3.7 [33] Let χ ∈ C(R−) and µ a Radon measure. Assume that

1. There exists w ∈ Em,χ(Ω) such that µ ≤ −χ(w)Hm(w).

2. µ(Ω) < +∞.

Then there exists u ∈ Em,χ(Ω) such that −χ(u)Hm(u) = µ. Moreover u ≥ w.

To omit the condition of existence of subsolution in the above theorem Hbil
and zaway [33] proceed as follows: Fix v ∈ Fm(Ω), σ a Radon measure with
no mass in all m-polar and denote by

A(σ, v) = {ϕ ∈ Em(Ω) : σ ≤ −χ(ϕ)Hm(ϕ) , ϕ ≤ v}.

Based on the above notations they gave sufficent condition to ensure the exis-
tence of solution to (∗∗) as well as an explicit expression of this solution. This
is the objective of the following theorem
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Theorem 3.8 [33] Assume that

1. Suppσ b Ω.

2. SuppHm(v) b Ω et Hm(v) is carried by m−polar subset of Ω.

Then the function u defined by u := (sup{ϕ : ϕ ∈ A(σ, v)})? belongs to Fm(Ω)
and satisfies −χ(u)Hm(u) = σ +Hm(v).

3.3 Local and Global solution to the Hessian equation

Based on the results obtained in the previous section we show the equivalence
between the existence of a global solution and the existence of a local solution
to the equation (∗∗). We will give in the following theorem sufficient conditions
on the function χ ensuring this equivalence

Theorem 3.9 [33] Assume that χ is convex and increasing, χ(−∞) > −∞
and χ(t) < 0 for every t < 0. If µ(Ω) < +∞ then the following statement are
equivalent:

• i) For every z ∈ Ω there exists a neighborhood Uz of z and vz ∈ Em(Uz)
such that µ ≤ Hm(vz) in Uz.

• ii) There exists u ∈ Em,χ(Ω) such that −χ(u)Hm(u) = µ.

Definition 3.10 1. The m−capacity of a Borelean subset E ⊂ Ω with re-
spect to Ω is denoted by Capm(E,Ω) and defined as

Capm(E) =: Capm(E,Ω) = sup

{∫
E

Hm(f) , f ∈ SHm(Ω),−1 ≤ f ≤ 0

}
.

2. A sequence of functions (fj)j defined on Ω is said to be convergent to f
with respect to Capm, when j → +∞ if for every compact K of Ω and
ε > 0 one has

lim
j→+∞

Capm({z ∈ K : |fj(z)− f(z)| > ε}) = 0.

In this part we are interested in the study of the problem linking the con-
vergence in capacity and the convergence of the associated Hessian measures
while working on the Cegrell classes Em(Ω) and on the complex energy classes
Em,χ(Ω). It is known that capacity convergence plays a crucial role in this
study. For more details on the importance of this notion we can refer to [1],
[5], [30], [31], [7],[21]. So we continue here these studies in the m-sh case and
also on complex energy classes.
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3.4 Convergence in Em(Ω)

The main idea of this section was inspired by the recent work of V.V. Hung
and N.V. Phu in [23] whose results will be essential in the demonstration of
various results in this part. We demonstrate in [19] with similar techniques
that if (fj)j converges in capacity towards a function f then we can control
1{f>−∞}Hm(f) by the lower limit of the Hessian measure associated with (fj)j
(here the sequence as well as its limit are in Em(Ω)) more precisely we show
the following result

Theorem 3.11 [20] If fj is a sequence of functions m-sh belonging to the
class Em(Ω) which satisfies fj → f ∈ Em(Ω) in capacity Capm. Then

1{f>−∞}Hm(f) ≤ lim inf
j→+∞

Hm(fj).

To improve the previous result we will construct classes (by requiring additional
conditions) so that we can each time have a result directly linking the limit of
the sequence of Hessian measures of (fj)j and the Hessian measure of f .

Definition 3.12 [20] We consider the sets Pm(Ω) and Qm(Ω) defined as fol-
lows:

Pm(Ω) = {f ∈ Em(Ω) ;∃ P1, ..., Pn polar in C / 1{f=−∞}Hm(f)(Ω\P1×...×Pn) = 0}.

Qm(Ω) = {(f, g) ∈ (Em(Ω))2; ∀z ∈ Ω,∃V a neighborhood of z and uV ∈ Eam(V ) / f+uV ≤ g sur V }.

We first demonstrate that the class Pm(Ω) is stable by addition and also by
maximum with any negative m-sh function. These properties make it possible
to improve the result obtained in the theorem 3.11 but for functions in Qm(Ω).

Corollary 3.13 [20] Let (fj)j ⊂ Em(Ω) be such that fj → f ∈ Em(Ω) in
capacity Capm. If fj, f ∈ Qm(Ω) for all j ≥ 1. SO

Hm(f) ≤ lim inf
j→+∞

Hm(fj).

If we replace the hypothesis (fj)j ⊂ Em(Ω) by the local hypothesis (fj)j ⊂
Fm(Ω) then we obtain exactly the convergence of the mass Hm(fj)(Ω) to
Hm(f)(Ω). To obtain a stronger version which ensures the continuity of the
Hessian operator we had to work in the class Pm(Ω). This brings us to the
following result

Theorem 3.14 [20] Let fj, g ∈ Em(Ω), f ∈ Pm(Ω) and D b Ω. We suppose
that

• fj → f in capacity Capm.
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• For all j ≥ 1, fj ≥ g on Ω\D.

Then Hm(fj)→ Hm(f) weakly when j →∞.

Remark 3.15 The previous theorem represents a different version of Theorem
3.8 in [23]. On the one hand the second hypothesis that we introduce is true
outside of a relatively compact set D which is not the case in Theorem 3.8 in
[23] because such an hypothesis is assumed to be true on Ω all together. On
the other hand the function f is taken in Pm(Ω) while in theorem 3.8 in [23]
it is enough that f ∈ Em(Ω).

3.5 Convergence in Em,χ(Ω)

Throughout this section we keep χ : R− → R− an increasing function. In
[22] Hung introduced the class Em,χ(Ω) to generalize the fundamental energy
classes defined by Benelkourchi, Guedj, and Zeriahi [3]. It should be noted
that if we assume that χ(0) 6= 0 then Em,χ(Ω) ⊂ Fm(Ω) therefore the complex
Hessian operator is well defined in Em,χ(Ω) and it has finite total mass on Ω.
So here we are only concerned with the case where χ(0) = 0.
Using theorem 3.6 one has that the operator is well defined so here we will
study it on Em,χ(Ω). The idea is to use each time the properties of the function
χ to obtain characterizations of Em,χ(Ω). For example we show that if the
function χ takes the value −∞ in the neighborhood of −∞ then any element
of the class Em,χ(Ω) does not charge the m-polars and we actually have an
equivalence. This is the objective of the following theorem:

Proposition 3.16 [20] The following propositions are equivalent:

1. χ(−∞) = −∞

2. Em,χ(Ω) ⊂ Eam(Ω).

Now we will give a complete characterization of the class Epm(Ω) introduced
by [28] according to the class Nm(Ω). To do this we generalize the class of
Benelkourchi, Guedj, and Zeriahi [3] Êχ(Ω) as follows

Definition 3.17

Êm,χ(Ω) :=

{
ϕ ∈ SH−m(Ω) /

∫ +∞

0

tmχ′(−t)Capm({ϕ < −t})dt < +∞
}
.

By demonstrating elementary properties of the class already introduced we
were able to give several important characteristics of Em,χ(Ω). The first result
obtained in this direction is that any function of this class vanishes on the
boundary as soon as we assume that the function χ is strictly negative and
also that under this condition we obtain that Em,χ(Ω) is entirely included in
the class Nm(Ω). More precisely we have
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Theorem 3.18 [20] Suppose that for all t < 0 we have χ(t) < 0, then

Em,χ(Ω) ⊂ Nm(Ω).

Moreover for all f ∈ Em,χ(Ω) we have

lim sup
z→w

f(z) = 0, ∀w ∈ ∂Ω.

The techniques used in the demonstration of the result above allow us to give
a complete characterization of the class Em,χ(Ω) namely

Corollary 3.19 [20] If for all t < 0; χ(t) < 0 then

Em,χ(Ω) =
{
f ∈ Nm(Ω) / χ(f) ∈ L1(Hm(f))

}
.

3.6 Extension of the class Em,χ(Ω)

As an application of the characterization obtained in the previous section we
will extend the theorem 3.14 to the class Em,χ(Ω) which represents a more
general result comparing to the work in [23]. More precisely we show these
convergence theorems

Theorem 3.20 [20]
Suppose that the function χ is continuous, χ(−∞) > −∞ and f, fj ∈

Em(Ω) for all j ∈ N. If there exists g ∈ Em(Ω) such that fj ≥ g on Ω then:

1. If fj converges to f in capacity Capm−1 then lim inf
j→+∞

−χ(fj)Hm(fj) ≥
−χ(f)Hm(f).

2. If fj converges to f in capacity Capm then −χ(fj)Hm(fj) converges
weakly to −χ(f)Hm(f).

Finally we deal with the famous problem of extending functions m− sh
Definition 3.21 For Ω b Ω̃ b Cn and f ∈ Em,χ(Ω), we say f̃ ∈ Em,χ(Ω̃) is
an extension of f if f̃ ≤ f on Ω.

In the case m = n and χ ≡ −1, the problem of existence of extension in this
case was studied by Cegrell and Zeriahi [9] in 2003. Then it was generalized
by Cegrell, Kolodziej, and Zeriahi [3] for the case of psh functions with weak
singularities. The general case when χ is assumed to be arbitrary was solved
by Benelkourchi in [2], i.e. on the class Eχ(Ω). Here we show that any function
f ∈ Em,χ(Ω) admits an extension in the send of the definition above.

Theorem 3.22 [20] Let Ω̃ be an m-hyperconvex domain such that Ω b Ω̃ b
Cn. If χ(t) < 0 for all t < 0 and f ∈ Em,χ(Ω) then there exists f̃ ∈ Em,χ(Ω̃)
such as ∫

Ω̃

−χ(f̃)Hm(f̃) ≤
∫

Ω

−χ(f)Hm(f)

and f̃ ≤ f on Ω.
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3.7 Convergence in capacity and Stability on Cegrell
classes

The notion of convergence in capacity plays an important role in the study of
different problems relating to the complex Hessian equation and especially in
the continuity of the Hessian operator. So in this part we will give equivalences
to this notion. For this we will give results on the classes Fam(Ω) and N a

m(Ω)
which are themselves generalizations of the classic case m = n. We first extend
Cegrells result. We then show this theorem

Theorem 3.23 [19] Let (fj)j ⊂ SHm(Ω) such that

• i) f0 ≤ fj ≤ 0 for a certain f0 ∈ Fam(Ω);

• ii) fj → f with respect to the capacity Capm on all E b Ω

then vHm(fj) converges weakly to vHm(f) in Ω and this convergence is uniform
with respect to any function m-sh v which is locally uniformly bounded.

This result makes it possible to deduce a relationship between the measure
Hm(u) and Hm(f) for any function f ∈ N a

m(Ω, u). This relationship is the
objective of the following theorem

Proposition 3.24 [19] Let u ∈ Em(Ω) and f ∈ N a
m(Ω, u) such that

∫
Ω

(−ϕ)Hm(f) <
+∞ for some ϕ ∈ E0

m(Ω). Then

1{f=−∞}Hm(f) = 1{u=−∞}Hm(u) in Ω.

Based on the two results already established in this section we give some
equivalence to the convergence in capacity namely we proved in [19] the fol-
lowing result

Theorem 3.25 [19]
Let Ω be a m-hyperconvex domain bounded in Cn, u ∈ Em(Ω) and h ∈

N a
m(Ω, u) which satisfies

∫
Ω

(−ϕ)Hm(h) < +∞ for some ϕ ∈ E0
m(Ω). We

assume that {fj} ⊂ N a
m(Ω, u) such that fj → f0 almost everywhere on Ω when

j → +∞ and fj ≥ h in Ω for all j ≥ 0. Then, the following assertions are
equivalent:

(a) fj → f0 in capacity Capm in Ω;
(b) ∀r > 0, we have

lim
j→+∞

∫
Ω

max

(
fj
r
, ϕ

)
Hm(fj) =

∫
Ω

max

(
f0

r
, ϕ

)
Hm(f0).

(c) ∀r > 0, we have

lim
j→+∞

∫
Ω

[
max

(gj
r
, ϕ
)
−max

(
fj
r
, ϕ

)]
Hm(fj) = 0,

Or gj :=
(
supk≥j fk

)∗
.
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The importance of the theorem 3.25 lies in its application to the study of sta-
bility of the complex Hessian operator. Indeed, using the equivalences already
demonstrated we give a more general version of the stability theorem of Cegrell
and Kolodziej [8]. We then show the following results

Lemma 3.26 Let µ be a nonnegative Borel measure in Ω, u ∈ Em(Ω), h ∈
N a
m(Ω, u) satisfying

∫
Ω

(−ϕ)Hm(h) < +∞ for some ϕ ∈ E0
m(Ω). If

Hm(u) ≤ µ ≤ Hm(h),

then there exists a unique f ∈ N a
m(Ω, u) such that Hm(f) = µ and f ≥ h in

Ω.

Theorem 3.27 [19]
Let {µj} be a sequence of positive Borel measures, u ∈ Em(Ω) and h ∈

N a
m(Ω, u) such that

∫
Ω

(−ϕ)Hm(h) < +∞ for a certain ϕ ∈ E0
m(Ω). If µj

converges weakly to a measure µ0 and

Hm(u) ≤ µj ≤ Hm(h) for all j ≥ 0,

then there exists a unique fj ∈ N a
m(Ω, u) such that fj ≥ h, Hm(fj) = µj and

fj → f0 in capacity Capm in Ω where Hm(f0) = µ0.

3.8 Complex Hessian operator associated to m-positif

3.9 m-positif current in the sens of Lu

We recall below the notion of m-positive current introduced by Lu [28].

Definition 3.28 A current T of bididimensions (p, p), with 1 ≤ p ≤ m is said
to be m-positive if

α1 ∧ · · · ∧ αp ∧ T ≥ 0.

For any m-positive form α1, · · · , αp of bidegree (1, 1).

Remark 3.29 1. If 1 ≤ s < r ≤ m, then any s−positive current is
r−positive.

2. Recently Dhouib and Elkhadhra [13] gave a new definition of the m-
positivity of currents and this notion generalizes the classic positivity
introduced by Lelong [25] since 1967 and it will be useful in the following
section.

3. If T is an m-positive current in the sense of Dhouib and Elkhadhra, then
the current T ∧ βn−m is m-positive in the sense of Lu.
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In this section we fix T a m-positive current in the sense of Lu such that
the following class

ET0,m(Ω) :=

{
ϕ ∈ SH−m(Ω) ∩ L∞(Ω); lim

z→∂Ω∩Supp T
ϕ(z) = 0,

∫
Ω

(ddcϕ)q ∧ T < +∞
}

is not empty. The class thus introduced coincides with the standard Cegrell
class when m = n and T = 1. In a similar way we generalize the Cegrell classes
introduced in 1998 and 2004 as follows:

Definition 3.30 The class ETp,m(Ω) is defined as follows:

ETp,m(Ω) :=

{
ϕ ∈ SH−m(Ω); ∃ ET0,m(Ω) 3 ϕj ↘ ϕ, sup

j≥1

∫
Ω

(−ϕj)p(ddcϕj)q ∧ T < +∞
}
.

If the sequence (ϕj)j associated with ϕ is chosen such that

sup
j≥1

∫
Ω

(ddcϕj)
q ∧ T < +∞,

then ϕ ∈ FTp,m(Ω).

Remark 3.31

1. In the case T = 1, the class ET0,m(Ω) coincides with the class E0,m(Ω)
introduced by Lu [28].

2. If the current T is defined on a neighborhood of Ω, then ET0,m(Ω) contains
all bounded functions in SH−m(Ω).

To be able to rigorously study the classes already introduced we need to demon-
strate various properties as well as some useful augmentations. The assessment
of these properties, which themselves represent a generalization of the classical
case, is the subject of the following proposition:

Proposition 3.32 [17]

1. If ψ ∈ SH−m(Ω) and ϕ ∈ ET0,m(Ω) then max(ϕ, ψ) ∈ ET0,m(Ω).

2. The class ET0,m(Ω) is convex.

3. ET0,m(Ω) ⊂ FTp,m(Ω) ⊂ ETp,m(Ω).

4. FTp1,m
(Ω) ⊂ FTp2,m

(Ω) for all p2 ≤ p1.

5. Suppose u, v ∈ ET0,m(Ω). If p ≥ 1 then for all 0 ≤ s ≤ q we have∫
Ω

(−u)p(ddcu)s ∧ (ddcv)q−s ∧ T

≤ Ds,p

(∫
Ω

(−u)p(ddcu)q ∧ T
) p+s

p+q
(∫

Ω

(−v)p(ddcv)q ∧ T
) q−s

p+q

where Ds,1 = 1 and Ds,p = p
(p+s)(q−s)

p−1 , p > 1.
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3.10 The class ETp,m(Ω)

The objective of this section is to study the operator (ddc.)q ∧ T on the class
ETp,m(Ω) .

To do this we start by showing that this operator is well defined on this
class while following the same techniques used by Cegrell [5]. We then obtain
the following result

Theorem 3.33 [17] Let u ∈ ETp,m(Ω) and (uj)j be a sequence of functions
m-sh which decreases towards u as in the definition 3.30. Then the sequence
((ddcuj)

q ∧ T ))j converges weakly to a positive measure µ and this limit is
independent of the sequence (uj)j chosen. We note (ddcu)q ∧ T := µ.

As the operator is now well defined we moved to study its properties while
inspiring properties that the classical Monge-Ampre operator had. We first
show a convergence theorem relating to the class ET1,m(Ω). Such a result was
established in the case T = 1 and m = n by Cegrell [5] and in the case m = n
and any T by Zaway [32].

Proposition 3.34 Let u ∈ ET1,m(Ω) and (uj)j be a decreasing sequence towards
u as in the definition of the calsse ET1,m(Ω), then the sequence (

∫
Ω
uj(dd

cuj)
q ∧

T )j decreases towards
∫

Ω
u(ddcu)q ∧ T.

As capacity plays an important role in the study of the operator already cited,
we then generalize the notion of Capacity of Bedford Taylor, Lu and Dabbek
and Elkhadhra in the following way

Cm,T (K,Ω) = Cm,T (K) = sup

{∫
K

(ddcv)q ∧ T, v ∈ SHm(Ω, [−1, 0])

}
for any compact K of Ω. Using this capacity we can ask the following question:
”Are all functions of the class ETp,m(Ω) quasicontinuous with respect to Cm,T
as is the case of classical Cegrell class functions Ep(Ω)?”
In the case T = (ddc|z|2)n−m, Lu [28] showed that every function m-sh is
Capm-quasicontinuous. In the general case Dhouib and Elkhadhra showed the
quasi-continuity of any function m-sh bounded (see Theorem 1 in [13]). How-
ever, for the general case we need a sufficient condition to answer positively to
the question cited as indicated by the following example:
If Ω is the polydisk of C3, T := [z1 = 0] ∧ ddc|z|2 and u(z1, z2) = log |z1|. The
current T is 2-positive, Cm,T (SuppT ) > 0 but the function u is not continuous
on the support of T .

To answer to the question already asked we establish the increase which
gives a link between the m-capacity of the sets {u < 2s} and the mass of the
operator.
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Proposition 3.35 Let u ∈ ETp,m(Ω) and (uj)j ⊂ ET0,m(Ω) decrease towards u
on Ω as in the definition 3.30. Then for all s > 0 we have

sp+qCm,T ({u ≤ −2s},Ω) ≤ sup
j≥1

∫
Ω

(−uj)p(ddcuj)q ∧ T.

As a consequence we obtain that for any function u ∈ ETp,m(Ω) we have
Cm,T ({u = −∞} = 0. Also based on the previous proposition we gave a
positive answer to the question already asked, namely the following theorem

Theorem 3.36 [17] Every u ∈ ETp,m(Ω)) is Cm,T -quasi-continuous.

3.11 The class FT
m(Ω)

Definition 3.37 We say that a function u ∈ FTm(Ω) if there exists a sequence
(uj)j ⊂ ET0,m(Ω) which decreases towards u such that

sup
j

∫
Ω

(ddcuj)
q ∧ T < +∞.

This section will then be devoted to studying the class FTm(Ω). To do this we
started to show a comparison result relating to this class namely

Proposition 3.38 [17] Let u, v ∈ FTm(Ω) such that u ≤ v on Ω then∫
Ω

(ddcv)q ∧ T ≤
∫

Ω

(ddcu)q ∧ T.

Establishing the above result requires the use of approximations of func-
tions belonging to this class. However, such an approximation existed in the
case m = n (see theorem 5.1 in [16]) but with an incomplete proof. For this we
first gave a complete demonstration and in a more general case. More precisely
we have demonstrated that any function ϕ ∈ FTm(Ω) can be approximated by a
sequence of functions (ϕj)j ⊂ ET0,m(Ω)∩C(Ω). Based on this result we deduced
a result similar to the theorem 3.36 but on the class FTm(Ω).

Theorem 3.39 [17] Any function ϕ ∈ FTm(Ω) is Capm,T−quasicontinuous.

3.12 Xing’s inequalities on the class ETp,m(Ω) and FT
m(Ω)

Xing’s inequalities represented a necessary and indispensable tool in pluripo-
tential theory so it is important to deal with this problem when the functions
belong to the class FTm(Ω) and mathcalET

p,m(Ω). To do this we first demon-
strate that integration by part remains true on ETp,m(Ω).
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Proposition 3.40 [17] Let u,w1, ..., wq−1 ∈ ETp,m(Ω) and S = ddcw1 ∧ ... ∧
ddcwq−1 ∧ T . SO ∫

Ω

vddcu ∧ S =

∫
Ω

uddcv ∧ S.

Moreover if we assume that u ≤ v on Ω, then for all p > 0 and h ∈ ET0,m(Ω) ∩
C(Ω) ∫

Ω

(−h)(ddcv)q ∧ T ≤
∫

Ω

(−h)(ddcu)q ∧ T.

Using the previous proposition we show the first equality of type Xing. More
precisely we have

Theorem 3.41 [17]
Let 0 < p ≤ 1 and u, v ∈ ETp (Ω) such that (ddcv)q ∧ T does not load the

(m,T )−pluripole then∫
{v<u}

(ddcu)q ∧ T ≤
∫
{v<u}

(ddcv)q ∧ T

As a consequence we obtain

Theorem 3.42 [17] Let u1, u2, · · · , up ∈ FTm(Ω) and h ∈ Em,T0 (Ω) then we
have:∫

Ω

−hddcu1∧· · ·∧ddcup∧T ≤
(∫

Ω

−h(ddcu1)p ∧ T
) 1

p

· · ·
(∫

Ω

−h(ddcup)
p ∧ T

) 1
p

.

3.13 m-positive currents in the sense of Dhouib and
Elkhadhra

In this part we study the complex Hessian operator associated with a m-
positive current in the sense of Dhouib and Elkhadhra [13]. This definition
was given to generalize the standard positivity of forms and currents.

Definition 3.43 [13] Let ϕ be a (p, p)−real form defined on Ω and m be an
integer such that p ≤ m ≤ n. The form ϕ is said to be strongly m-positive on
Ω if it can be written in the following form

ϕ =
N∑
k=1

λkα
k
1 ∧ · · · ∧ αkp

where αk1, · · · , αkp are m-positive forms on Ω and λk ≥ 0.
By duality a current T of two dimensions (n−p, n−p) is said to be m-positive
if we have

〈T, βn−m ∧ ϕ〉 ≥ 0

For any strongly m-positive ϕ form of bidegrees (m− p,m− p).
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Throughout this part T will be an m-positive closed current of bidegree (p, p) in
the sense of the definition 3.43. In [13] the authors developed a pluripotential
theory relating to T . Based on the definition 3.43, they defined the complex
Hessian operator associated with a closed m-positive current to generalize the
work of Bedford and Taylor[1], Blocki [4], and Lu [27]. They showed that the
operator (ddc.)p ∧ T ∧ βn−m is well defined on the set of functions m-sh which
are possibly bounded in the neighborhood of ∂Ω ∩ SuppT . The essential tool
in their study is the convergence in capacity capm,T defined according to the
Hessian measure associated with T as follows

Definition 3.44 For any compact K of Ω the m-capacity of K associated with
T denoted by capm,T (K) is defined as being

capm,T (K,Ω) = capm,T (K) := sup{
∫
K

(ddcv)m−p∧T∧βn−m, v ∈ SHm(Ω), 0 ≤ v ≤ 1},

and for all E ⊂ Ω, capm,T (E,Ω) = sup{capm,T (K), K a compact of Ω}.

We are interested here in studying problems relating to convergence in capacity
capm,T .
We first show that the convergence of a sequence of locally bounded m-sh
functions (uj)j towards a function u, implies its convergence in capacity capm,T .
This generalizes the known result in the standard case which was given by
Bedford and Taylor [1] for the case m = n and T = 1 and by Lu [28] when
T = 1 and any m. This result is given as follows

Theorem 3.45 [18]
If uj, u ∈ SHm(Ω)∩L∞loc(Ω) such that uj = u on a neighborhood of ∂Ω and

uj decreases towards u, then for all δ > 0 we have:

lim
j→+∞

capm,T {z ∈ Ω, uj(z) > u(z) + δ} = 0.

Based on the quasicontinuity theorem demonstrated by Dhouib el Elkhadhra
in [13],they gave a link between the convergence in capacity and the conver-
gence of the Hessian measure and always when these two notions are relative
to the current T .

Theorem 3.46 [13]
Let (uj)j be a sequence of functions m-sh locally uniformly bounded on Ω

and u ∈ SHm(Ω) ∩ L∞loc( Omega).

1. If uj converges to u in capacity capm,T then for all E b Ω, the sequence
(ddcuj)

m−p ∧ T ∧ βn−m weakly converges to (ddcu)m−p ∧ T ∧ βn−m.
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2. It is assumed that it exists E b Ω such that ∀j, uj = u on Ω r E and
that the sequences u(ddcuj)

m−p ∧T ∧ βn−m, uj(ddcu)m−p ∧T ∧ βn−m and
uj(dd

cuj)
m−p∧T ∧βn−m converge weakly to u(ddcu)m−p∧T ∧βn−m then

uj converges to u with respect to the capacity capm,T on E.

If we replace the current T by a sequence of currents which converge towards
it then we obtain a generalization of the Elkhadhra theorem [15] which was
demonstrated in the case m = n.

Theorem 3.47 [18]

Let T and (Tk)k be closed m-positive currents of two dimensions (p, p) on
Ω such that Tk converges in the direction of the currents towards T in Omega.
Let u and uk be m − sh functions locally uniformly bounded on Ω such that
uk → u in capacity capm,T on all E b Ω . If we assume that

||Tk ∧ βn−m|| � capm,T

on all E b Ω uniformly when k →∞,

then ddcuk ∧ Tk ∧ βn−m → ddcu ∧ T ∧ βn−m weakly Ω.

4 Open Problem

Following the results cited above several open problems can be noticed:

• (P1): Following the result found in the Lemma 3.26, the right hand side
of the assumption was given by a function h ∈ N a

m(Ω, u). So one can ask
the following open question ” If we assume that the right hand side is a
measure carried by an analytical set, can we prove that the existence of
a sub-solution gives a solution?”. The motivation to ask such question
follows from a remark given by Dinew and Chinh in [11] where they gave
an example of m−subharmonic function solution of the Hessian equation
with right hand side carried by analytic set which is hard to find in the
case of plurisubharmonic function.

• (P2): Can we characterize the (m,T )-polar sets as in the classical case
m = n and T = 1 where negligible sets are pluripolar [1].

• (P3): It is known that m-polar sets are given by an m-subharmonic
functions. Can we characterize them using function in the weighted
energy class as it is true when m = n ( See [3]).
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