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Abstract

This paper introduces a novel approach that utilizes the
weighted harmonic mean in combination with multiple uni-
variate cumulative distribution functions to create a fresh uni-
variate cumulative distribution. In addition to an innovative
expression, it exhibits direct ordering properties involving tra-
ditional mixtures of univariate cumulative distribution func-
tions. After establishing the theoretical foundation, we lever-
age these findings to develop new families of trigonometric
distributions. We highlight a special case that extends the ex-
ponentiated distribution’s scope and demonstrates its superior
performance in data fitting compared to fair competitors like
the exponential, gamma, exponentiated exponential, and sine
exponential distributions. In summary, our methodology of-
fers a versatile framework for modeling and understanding a
wide array of statistical phenomena.
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1 Introduction

The study of cumulative distribution functions (CDFs) plays a pivotal role
in statistical analysis, probability theory, and data modeling. These func-
tions provide essential insights into the probabilities associated with random
variables and underpin various statistical methodologies. In particular, the
mixture CDFs that combine multiple univariate CDFs have long been a cor-
nerstone in statistics. The most famous examples are the weighted arithmetic
and geometric means of univariate CDFs, as described below.

� Let n be a positive integer, F1(x), . . . , Fn(x) be n univariate CDFs of ab-
solutely continuous distributions, and α1, . . . , αn be n non-negative real
numbers such that

∑n
i=1 αi = 1. Then the following weighted arithmetic

mean of F1(x), . . . , Fn(x) is a valid CDF:

Un(x) =
n∑
i=1

αiFi(x), x ∈ R. (1)

� In a similar framework, with the use of products, the following weighted
geometric mean of F1(x), . . . , Fn(x) is a valid CDF:

Vn(x) =
n∏
i=1

[Fi(x)]αi , x ∈ R. (2)

Both approaches offer a flexible framework for capturing a wide range of
distribution shapes. The literature on this topic is vast. A short list of refer-
ences is [5], [10], [12], [20], [7], [11], [3], [2], [15], [13], [14] and [1]. However,
as data sets become increasingly diverse and complex, there is a growing need
for novel approaches that go beyond conventional mixture CDFs.

In this paper, we introduce a new approach that leverages the concept of
the weighted harmonic mean and combines it with several univariate CDFs
to construct a new, innovative univariate CDF. It offers a real alternative to
traditional mixture CDFs, presenting a fresh perspective on modeling complex
data distributions. One of the key advantages of our approach is its direct or-
dering properties compared to traditional mixture CDFs. After establishing
the theoretical basis, we use our findings to create new kinds of trigonometric
families of univariate absolutely continuous distributions, i.e., those generated
by CDFs involving trigonometric functions (sin, cos, tan, . . .). Creating such
trigonometric families holds promise for capturing complex patterns in data
analysis. See [18], [19], [16] and [17]. We highlight a special case extending the
scope of the exponentiated distribution. It is illustrated by a statistical ap-
plication, revealing that it can be more accurate in the data fitting objective
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than strong direct competitors such as the exponential, gamma, exponenti-
ated exponential (exp.exponential), and sine exponential distributions. Thus,
our methodology promises to provide a versatile framework for modeling and
understanding a wide range of statistical phenomena.

The plan is as follows: Section 2 is devoted to the main results. Applica-
tions are given in Section 3. An open problem is formulated in Section 4.

2 Results

The main findings are presented in this section.

2.1 Weighted Harmonic Mean Approach

In order to motivate our approach, a retrospective on the weighted harmonic
mean transformation is necessary. As a first presentation, the weighted har-
monic mean is a statistical measure that combines the concepts of harmonic
mean and weighted average. It is used to calculate a weighted average in
situations where the data has varying degrees of importance. For a positive
integer n, n data x1, . . . , xn and n non-negative real numbers α1, . . . , αn such
that

∑n
i=1 αi = 1, the weighted harmonic mean of x1, . . . , xn is indicated as

wn =

[
n∑
i=1

αi
xi

]−1
.

Thus, it is useful to give more importance or weight to certain data while cal-
culating the mean, especially when dealing with values that are reciprocals or
rates, such as speed, efficiency, or ratios. By defining the weighted arithmetic
and geometric means of x1, . . . , xn as

un =
n∑
i=1

αixi

and

vn =
n∏
i=1

xαi
i ,

respectively, the following inequalities hold:

wn ≤ vn ≤ un. (3)

See [4] for the details. As detailed in the introduction, the weighted arithmetic
and geometric means of multiple univariate CDFs have been the object of
several studies in the literature. However, to the best of our knowledge, there
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is no evocation of the use of the weighted harmonic means of CDFs. In this
paper, we aim to fill this gap by introducing and examining the concept of
the weighted harmonic mean applied to multiple univariate CDFs, thereby
contributing to the broader understanding of statistical aggregation methods
in probability theory.

2.2 Main Result

The weighted harmonic mean of multiple univariate absolutely continuous
CDFs is described below.

Proposition 2.1 Let n be a positive integer, F1(x), . . . , Fn(x) be n univariate
CDFs of absolutely continuous distributions and α1, . . . , αn be n non-negative
real numbers such that

∑n
i=1 αi = 1. Then the weighted harmonic mean of

F1(x), . . . , Fn(x) given as

Wn(x) =

[
n∑
i=1

αi
Fi(x)

]−1
, x ∈ R, (4)

is a valid CDF.

Proof. Since, for any i = 1, . . . , n, limx→−∞ Fi(x) = 0 with ai ≥ 0, we have

lim
x→−∞

Wn(x) = lim
x→−∞

[
n∑
i=1

αi
Fi(x)

]−1
= lim

y→+∞

1

y
= 0.

On the other hand, since, for any i = 1, . . . , n, limx→+∞ Fi(x) = 1 with∑n
i=1 αi = 1, we have

lim
x→+∞

Wn(x) = lim
x→+∞

[
n∑
i=1

αi
Fi(x)

]−1
=

[
n∑
i=1

αi

]−1
= 1.

Furthermore, by using standard differentiation rules, we establish that

Wn(x)′ =

{
n∑
i=1

αifi(x)

[Fi(x)]2

}[
n∑
i=1

αi
Fi(x)

]−2
,

where fi(x) is the probability density function (PDF) associated with Fi(x).
Since, for any i = 1, . . . , n, αi ≥ 0, fi(x) ≥ 0 and Fi(x) ≥ 0, we have
Wn(x)′ ≥ 0. As a result, Wn(x) is non-decreasing. We conclude that Wn(x) is
a valid CDF. The proof ends. �
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Remark 2.2 For the non-decreasing property of Wn(x), the following devel-
opment is also valid: For any x ≤ y and i = 1, . . . , n, we have Fi(x) ≤
Fi(y), and since αi ≥ 0, we have αi/Fi(y) ≤ αi/Fi(x), so

∑n
i=1[αi/Fi(y)] ≤∑n

i=1[αi/Fi(x)], which implies that Wn(x) ≤ Wn(y). The non-decreasing prop-
erty of Wn(x) is proved. The interest of this alternative proof is that it is
also valid for univariate CDFs of discrete distributions, beyond the absolutely
continuous case.

To the best of our knowledge, the CDF in Equation (4) has never been stud-
ied. It has the advantage of being very general; we can tune F1(x), . . . , Fn(x)
and α1, . . . , αn to make it appropriate for a given modeling problem. Also, the
corresponding PDF is quite simple; it is

gn(x) =

{
n∑
i=1

αifi(x)

[Fi(x)]2

}[
n∑
i=1

αi
Fi(x)

]−2
, x ∈ R, (5)

which can also be written as the following finite linear combination:

gn(x) =
n∑
i=1

αihi(x), x ∈ R,

where, for any i = 1, . . . , n,

hi(x) =
fi(x)

[Fi(x)]2

[
n∑
i=1

αi
Fi(x)

]−2
.

Similarly, other functions of interest can be expressed. For instance, the sur-
vival, hazard and reversed hazard rate functions are given as

Kn(x) = 1−

[
n∑
i=1

αi
Fi(x)

]−1
, x ∈ R,

qn(x) =

{
n∑
i=1

αifi(x)

[Fi(x)]2

}[
n∑
i=1

αi
Fi(x)

]−1{ n∑
i=1

αi
Fi(x)

− 1

}−1
, x ∈ R

and

rn(x) =

{
n∑
i=1

αifi(x)

[Fi(x)]2

}[
n∑
i=1

αi
Fi(x)

]−1
, x ∈ R,

respectively. One limitation of our approach, however, is the determination of
the quantile function based on the CDF in Equation (4), which can be difficult
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to exhibit analytically. Indeed, it is the function Sn(x) satisfying the following
nonlinear equation: Wn[Sn(x)] = x, i.e., such that

n∑
i=1

αi
Fi[Sn(x)]

=
1

x
,

which must take into account the simultaneous actions of F1(x), . . . , Fn(x).
Another interest concerns a manageable ordering of CDFs, as formulated

in the next result.

Proposition 2.3 Let us consider Un(x), Vn(x) and Wn(x) as defined in Equa-
tions (1), (2), and (4), respectively. Then, for any x ∈ R, the following order-
ing of CDFs holds:

Wn(x) ≤ Vn(x) ≤ Un(x).

The proof is an immediate consequence of the inequalities in Equation (3).
In the sense of Proposition 2.3, for the same univariate CDFs F1(x), . . . , Fn(x),

the corresponding weighted harmonic mean offers a real modeling alternative
to the corresponding weighted arithmetic and geometric means. The potential
of our method in applied sciences is considerable given the diverse applications
of the weighted arithmetic and geometric means of multiple univariate CDFs.

3 Applications

This section is devoted to some applications of the proposal.

3.1 New Trigonometric Families of Distributions

In this part, we show how the suggested weighted harmonic transformation
can be used to generate new and practical distributions. To this end, we focus
on the case n = 2 and we consider α ∈ [0, 1], such that α1 = α and α2 = 1−α.
The corresponding weighted harmonic mean of F1(x) and F2(x) becomes

W2(x) =

(
α

F1(x)
+

1− α
F2(x)

)−1
, x ∈ R.

After some arrangements, we can also write it as

W2(x) =
F1(x)F2(x)

F1(x)− α[F1(x)− F2(x)]
, x ∈ R.

Several strategies are possible for the choices of F1(x) and F2(x), including the
CDFs of various lifetime distributions (see [21]). Obviously, W2(x) corresponds
to F1(x) for α = 1 and to F2(x) for α = 0.
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Based on W2(x), an immediate example of simple family of distributions
that can be derived is obtained by fixing a single CDF, say F (x), and choosing
F1(x) = F (x) and F2(x) = [F (x)]θ+1 with θ > 0, which gives

W2(x) =
[F (x)]θ+1

1− α{1− [F (x)]θ}
, x ∈ R.

The corresponding family appears to be a modification of the famous Marshall-
Olkin family, as described in [9]. Further work in this direction is possible.

In what follows, we propose to use our approach to contribute to the de-
velopment of the trigonometric families. We fix a single CDF, say F (x), put
F1(x) = F (x), define F2(x) as various CDFs of existing trigonometric families,
and list some new families derived from the definition of W2(x).

� By choosing F2(x) = sin[(π/2)F (x)], which is the CDF of the sine gen-
erated family (see [19]), we create the weighted harmonic sine generated
family by the following CDF:

W2(x) =

(
α

F (x)
+

1− α
sin[(π/2)F (x)]

)−1
, x ∈ R.

We can also write it as

W2(x) =
F (x) sin[(π/2)F (x)]

F (x)− α{F (x)− sin[(π/2)F (x)]}
, x ∈ R (6)

or as the following sine and sine cardinal expression:

W2(x) =
sin[(π/2)F (x)]

1− α{1− (π/2) sinc[(π/2)F (x)]}
, x ∈ R,

where sinc(x) = sin(x)/x for x 6= 0 and sinc(x) = 1 for x = 0.

� By selecting F2(x) = tan[(π/4)F (x)], which is the CDF of the tangent
generated family (see [18]), we introduce the weighted harmonic tangent
generated family by the following CDF:

W2(x) =

(
α

F (x)
+

1− α
tan[(π/4)F (x)]

)−1
, x ∈ R.

We can also write it as

W2(x) =
F (x) tan[(π/4)F (x)]

F (x)− α{F (x)− tan[(π/4)F (x)]}
, x ∈ R.
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� By choosing F2(x) = 1 − cos[(π/2)F (x)], which is the CDF of the co-
sine generated family (see [16]), we define the weighted harmonic cosine
generated family by the following CDF:

W2(x) =

(
α

F (x)
+

1− α
1− cos[(π/2)F (x)]

)−1
, x ∈ R.

We can also write it as

W2(x) =
F (x) {1− cos[(π/2)F (x)]}

F (x)− α{F (x)− 1 + cos[(π/2)F (x)]}
, x ∈ R.

� By selecting F2(x) = sec[(π/3)F (x)] − 1, which is the CDF of the se-
cant generated family (see [17]), we create the weighted harmonic secant
generated family by the following CDF:

W2(x) =

(
α

F (x)
+

1− α
sec[(π/3)F (x)]− 1

)−1
, x ∈ R,

where sec(x) = 1/ cos(x). We can also write it as

W2(x) =
F (x) {sec[(π/3)F (x)]− 1}

F (x)− α{F (x)− sec[(π/3)F (x)] + 1}
, x ∈ R.

To the best of our knowledge, none of these trigonometric families have been
the subject of research, despite evident interest. This statement is illustrated
in the next part.

3.2 Illustration

Let us consider the weighted harmonic sine generated family as indicated by
the CDF in Equation (6) and apply it with the exponential distribution for
the baseline. That is, we consider the following CDF: F (x) = 1 − e−λx for
x > 0 and with λ > 0, and F (x) = 0 otherwise, and, after the use of some
trigonometric formulas, the CDF in Equation (6) becomes

W2(x) =
(1− e−λx) cos[(π/2)e−λx]

1− e−λx − α{1− e−λx − cos[(π/2)e−λx]}
, x > 0,

where α ∈ [0, 1], and W2(x) = 0 for x ≤ 0.
Let us call the related distribution the weighted harmonic sine exponential
(WHSE) distribution. It is a two-parameter lifetime distribution that realizes a
weighted harmonic mean tradeoff between the exponential distribution and the
sine exponential distribution, as indicated in [8]; the exponential distribution
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is obtained by taking α = 1 and the sine exponential distribution comes by
choosing α = 0.

By differentiation (or using Equation (5)), the corresponding PDF is ob-
tained as

g2(x)

=
αλe−λx{cos[(π/2)e−λx]}2 + (1− α)(1− e−λx)2(π/2)λe−λx sin[(π/2)e−λx]

[1− e−λx − α{1− e−λx − cos[(π/2)e−λx]}]2
,

x > 0,

and g2(x) = 0 for x ≤ 0. This PDF function can serve as the mathematical
model that describes the likelihood of observing the given data. In maxi-
mum likelihood estimation, the goal is to find the parameters of the PDF that
maximize the likelihood of the observed data. The aim is to determine the
most probable set of parameters that generated the observed data, making it
a fundamental tool in statistical modeling and data analysis.

With this approach in mind, we illustrate the interest of the WHSE distri-
bution by fitting a real data set and compare the obtained results with those
of its serious competitors: the exponential, gamma, exp.exponential, and sine
exponential distributions, which are all valuable generalizations of the expo-
nential distributions (without power shape parameter in the main exponential
term for fairness). More specifically, the breaking stress of carbon fibers data
set from sample 100 observations is adapted for data analysis. This data set
was used by [6] to illustrate the usefulness of the sine exponential distribution.
The data are as follows: 3.7, 2.74, 2.73, 2.5, 3.6, 3.11, 3.27, 2.87, 1.47, 3.11,
4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.9, 3.75, 2.43, 2.95, 2.97,
3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.2, 3.33, 2.55, 3.31, 3.31, 2.85,
2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68,
2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2,
1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38, 1.84,
0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.7, 2.03, 1.8, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89,
2.88, 2.82, 2.05, 3.65.
Statistical model selection tools such as the maximized log-likelihood (LogL),
Akaike information criterion (AIC), Bayesian information criterion (BIC),
and Kolmogorov-Smirnov (K − S) and Cramér-von Mises (W ∗) test statistics
with their corresponding p-values are considered for model comparison. The
suitable model for fitting the data set under consideration is associated with
the one having the maximized log-likelihood value and the smallest value in
terms of the AIC, BIC, K − S, and W ∗ with the highest p-values. The sum-
mary results and the graphical PDF fit of the distributions for the data set are
presented in Table 1 and Figure 1, respectively.
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Table 1: Summary of the fitting results
Distributions Parameter LogL AIC BIC K − S W ∗

estimates (p-value) (p-value)

WHSE α = 0.0355 -142.8965 289.793 295.0034 0.0569 0.0605
λ = 1.7316 (0.9024) (0.8121)

Sine exponential λ = 0.2188 -191.201 384.4021 387.0074 0.3110 3.2185
(7.9× 10−9) (1.5× 10−8)

Exp.exponential λ = 0.9869 -146.1823 296.3646 301.5749 0.1077 0.2292
θ = 7.7897 (0.196) (0.2174)

Gamma α= 5.9545 -143.2336 290.4673 295.6776 0.0934 0.1501
λ = 2.2715 (0.3473) (0.3893)

Exponential λ = 0.3814 -196.3709 394.7417 397.3469 0.3206 3.4340
(2.36× 10−9) (4.56× 10−9)

Figure 1: Estimated PDF fits of the distributions for the considered data set

Based on the criteria for model selection, the fits in Table 1 are obviously in
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support of the WHSE distribution, having the maximized log-likelihood value
and the smallest value in terms of the AIC, BIC, K − S, and W ∗ with the
highest p-values. On the other hand, the graphical illustration of the esti-
mated PDF in Figure 1 shows that the fit of the WHSE distribution matches
closer to the empirical PDF of the data set than the competing distributions,
thus validating the superiority of the WHSE distribution over the competing
distributions. On the other hand, the results of the exponential and sine ex-
ponential are not good, while those of the proposed tradeoff harmonic mean
are suitable, confirming the interest of our approach.

4 Open Problem

Based on Proposition 2.1, a question naturally arises: Under what assumptions
can we extend this result to the bivariate (or multivariate) case? That is, let n
be a positive integer, F1(x, y), . . . , Fn(x, y) be n bivariate CDFs of absolutely
continuous distributions, and α1, . . . , αn be n non-negative real numbers such
that

∑n
i=1 αi = 1, and

Zn(x, y) =

[
n∑
i=1

αi
Fi(x, y)

]−1
, (x, y) ∈ R2.

Under what assumptions Zn(x, y) is a valid CDF? The answer seems not to be
immediate and deserves a complete study that we postpone for future research.
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