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Abstract

In this paper, we characterize various notions of posinor-
mality of operators in norm-attainable classes. We give a de-
tailed theory on posinormality, coposinormality and supraposi-
normality of operators in norm-attainable classes. We also
give some open problems in general Banach space setting for
the supraposinormal operators.
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1 Introduction

Hilbert spaces are key in several studies in mathematics and their advance-
ments both trivial and non-trivial cases in mathematics and quantum theory.
Brown [2] introduced a class of operators which obeys the condition that T ∗T
commutes with T. These operators are referred to as quasinormal operators.
When computed routinely, they indicate that if T is quasinormal and λ 6= 0,
then λT is quasinormal, but the translate T + λ can be quasinormal only if T
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is normal. Building on the same introduction, Brown [2] started by analyzing
his result of which gave him a platform of giving the characteristics of a sub-
class that is very large of B(H), set of operators that are linear and bounded
T : H −→ H on a space called Hilbert H. The study made it easier to search
the different types of other operators so that it could be possible to come up
with other different operators. Hence, in so doing, the study had to carry
out some references such as Z∗Z − ZZ∗ as a self-commutant of Z, written as
[Z∗, Z]. This meant that a self-adjointing operator J is greater than zero, that
is, 〈Jf, f〉 ≥ 0 termed as positive if for all f ∈ H and an operator Z is said to
be normal but under one condition that [Z∗, Z] = 0. This was very interesting
indeed since one discovery of an operator, leads to the discovery of another
positive operator. Rhaly [27] studied hypornormal operators in relation to
posinormality where the results recorded proved that hyponormal operators
are necessarily posinormal. Further on the same, the author extended the
study to coposinormality of which the results recorded, proved that hyponor-
mal operators are not necessarily coposinormal. On studying the conjecture
of hyponormality for a ordered positive integer Cesáro matrix, [28] studied the
Cesáro matrix of order three and four. The results were given by employing
positive normality, which employed interrupters that are diagonal and tech-
niques that involves computations of elements from calculus, showed that order
three and four matrices of Cesáro are co-positive normal. Using these results,
the conjecture for matrices of order greater than four of Cesáro with positive
integer were also studied. Daoxing [6] studied hyponormal operators in rela-
tion to rank one self-commutators where the analytical theory was developed
for the pure hyponormal operators with self-commutators with rank one were
covered and spectra which are connected finitely and closely bounded domains
with analytic boundaries. The analytic model of class was studied alongside
the two kernel S〈., .〉 and E〈., .〉, the double model on spaces of Hilbert for
analytic functions of the resolvent sets and diagonalizing their adjoint on some
spaces of Hilbert that are kernel. Further, the function of Pincus principal
of hyponormal operator on some special case was also studied. It was found
that if H is a rank one pure hyponormal operator with a self-commutatant
and a function of rotational invariant Pincus principal, then, either H = bUe+,
where b is a non-zero complex number and Ue+ is unilateral shift with mul-
tiplicity one. If H is cyclic but not invertible, or σ(H) = ζ : m ≤ |ζ| ≤ n,
for 0 < m < n < ∞ and f(ζ) = 1 for ζ ∈ σ(H), then, H is cyclic invertible.
Senthilkumar and Sherin [36] studied and characterized the composition of op-
erators giving emphasis on the composition of weighted operators of operators
that are normal on L2 space and (α, β) on general weighted Hardy Space. By
taking (X,Σ, λ) as a finite sigma space with a measure and D be a transfor-
mation from X into itself whose measure is not singular, then the composition
transformation C, on L2(λ) induced D which was given by Ck = kD for every
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k in L2(λ). Since C was bounded, then it was called a composition operator
on L2(λ). It is known that D induces a bounded composition operator C on
,L2(λ) under the condition that the measure λD−1 is continuously absolute
when the measures λ and k are considered, is essentially bounded where k is
a measure derivation of λD−1 when consideration is made to λ, which was
referred to as Rado-Nikodym. The derivative measure λ(DN)−1 in reference
with λ was represented by kN , where DN is a composition of D, n times. Ev-
ery function k whose value is complex with essential bounding, produces an
operator Mf on L2(λ) that is bounded, which is given by Mkk = kk, then it
is called C∗C = Mk for every f ∈ L2(λ). A weighted composition operator
W (w.c.o) induced by D is a linearly transforming the values of a complex
set Σ with a function that is measurable k of the form Wk = wkD, with w
as a value with complex σ such that when w = 1, then, it suffices that W is
an operator with composition. Rhoades and Rhaly [31] studied posinormality
operators and extended it to the factorable matrices with a constant main
diagonal.In the study, sufficient conditions for positive normal factorable ma-
trices with a main diagonal constant to be hyponormal, were given which some
Toeplitz and non-Toeplitz matrices satisfy. Various examples were given which
were used by [31] to obtain a result that is more general on the same. Taking
R = R({ak}, {cl}) to be a factorable matrices with P a diagonal interrupter,
assuming that ak, cl 6= 0 for all k, l to obtain P, we engage the following matrix
Y = [bkl] where by Y is bounded on `2 and both {an} and {an/cn} are de-
creasingly positive sequence that is convergent to 0, then R is posinormal since
R = BR. The same R is R-hyponormal if for all f in `2, 〈(R∗R−RR∗)f, f〉 =
〈(R∗R−(R∗B∗)(BR)f, f〉 = 〈(I−B∗B)Rf,Rf〉 ≥ 0. Consequently, it was con-
cluded that R was to be hypornormal when Q = I − P ≥ 0, where P = B∗B
where the range of R is composed of all the e′ns extracted from a basis that is
standard and orthonormal for`2. Rhaly [30] extended the study of hyponormal-
ity and dominant operators in relation to lower factorable triangular matrix Y ,
acting as a bounded linear operator on `2. Conditions that sufficiently qualify
the matrices of lower triangle which are factorable to be hyponormal and dom-
inant on `2 were given. Further, it was shown on a space Hilbert H, that B(H)
represents the set of operators that are linear and bounded, then E ∈ B(H) is
hyponormal if E∗E−EE∗ ≥ 0. Further, the operator is called dominant for all
λ in the spectrum of A, if the Ran(E − λ) ⊂ Ran(E − λ)∗. In conclusion, the
author proved that hyponormal operators are necessarily dominant operators.
Amelia [??] studied posinormality in relation to hyponormality. The equation
AA∗ ≤ λ2A∗A, is posinormal if and only if λ = c rendering the equation to be
AA∗ ≤ c2A∗A. Agure, Okelo and Oleche [22] studied elementary operators and
used the concepts learnt to give an analogy on norm-attainability of elemen-
tary operators and derivations. In these study, conditions that are sufficient for
norm-attainability to hold were given. Okelo [23] studied norm-attainability in
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specific operators that are elementary and gave an analogy on when operators
that are elementary become orthogonal. This was possible due to the fact that
characterizations of these operators that are elementary have been done by a
good number of mathematicians various diversities which gave an opportunity
for the study of orthogonality which had not been studied. to be. First, the
necessary and sufficient conditions of norm-attainability were given which were
used to give the results on implementation of operators that are elementary
on when the range and the kernel of these operators are orthogonal to oper-
ators in norm-attainable and their classes. Sadiq [33] studied quasi-positive
normal operators focusing on the following sets of operators; normal, hyponor-
mal, M -hyponormal, dominant and positive normal. Kostov [8] introduced
an extension of group of hyponormal and positive normal operators naturally
where a family of eigen distributions, unitary invariants, and model function
were constructed. A property of operators from hyponormal class that is well
known for T is Im ⊂ [T ∗] = {T ∗K : K ∈ B(H)} which is an ideal and
right in algebra B(H), which T ∗ generates. These group of operators in hy-
ponormal class extended to the positive normal operators that were introduced
and researched by Rhaly [26]. On studying the functional models for posinor-
mal operators, a class of (p) positive normal operators that are polynimial of
p = Σn

k=1akz
k for which there is a polynomial with a term that is constant

and zero where P (T ) ∈ [T ∗]. Gopal [5] studied supraposinormality where the
concept was used to give an analogy of generalized quasi-posinormal operators
by describing some properties for the operators A on a space of Hilbert H
satisfying (E∗E)k ≤ c2E∗kEk for some c > 0, k ≥ 2 and also presented some
characterizations for the composition operators and the weighted composition
operators on the Hilbert L2 to be of this type. Further, posi-(M,k) operators
were studied and presented some properties along with certain equivalent con-
ditions for an operator to be posi-(M,k). Strict inclusion of (M,k) class of
operators in posi-(M,k) was also brought into picture. Moreover, the deriva-
tives of conditions for composition and weighted composition operators on
L2(Ω, µ, A) to be in Posi-(M,k) class. Duggal [7] defined a dominant operator
that is; for a real number, Mλ, ‖(A−λ)∗x‖ ≤Mλ‖(A−λ)x‖ ∀ x ∈ H holds. In
any case, if M exists as a constant and Mλ ≤M ∀ λ, then the operator A that
is dominant is implied to be M -hyponormal. Further, a power bounded opera-
tor was discussed where by an operator A, sup ‖An‖ ≤M, holds with M being
a number that is positive, then we take over the supremum for all numbers
n that are natural. On studying dominant operators [7] gave consideration of
linear transformation that are bounded on a space of Hilbert H ”into itself or
into another Hilbert space H1”, using the results of the theorem of Putnam
and Fuglede which states, whenever A and B∗ are operators that are normal,
then AX = XB holds for operator X. Equally A∗X = XB∗ simultaneously.
Further, Moore et. al. [16] showed that since AX = XB is satisfied for A
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and B∗ operators that are M -hyponormal for X, then A∗ = XB∗ for injective
operator X whose range is dense. This observation was employed to prove that
Fuglede-Putnam operator holds for an operator A which is dominant and an
operator B∗ which is M -hyponormal . Consequently for AX = XB on an oper-
ator A which is dominant and an operator B∗ which is M -hyponormal with the
completion of orthogonality for hermitian operator X with a kernel and the re-
striction of B, then AX = XB∗. Nickolov [18] studied posinormality and used
it to give a conjecture of totally p-posinormality operators whereby an operator
is p-posinormal if for T ∈ B(H) and a polynomial P, ‖P (T ∗z )h‖ ≤M(z)‖Tzh‖
exists for every h ∈ H. Also by the compacts of C with an operator M(z)
which is bounded, then Tz = T − zI. Further, it was proved that every opera-
tor that is totally positive normal is a sub-scalar, such that, it is restricted to a
general operator with scalar and to a subspace that is invariant together with
the presentation of corollaries that are significant on the property of Bishop β
and availability of sub-spaces that are invariant. Lee [11] carried a study on
the powers of P -posinormal operators where the analogy for an operator to be
p-posinormal was given where for if E ∈ B, then (EE∗)g ≤ µ(E∗E)g for µ > 1
is g-posinormal. Further, it was proved that whenever E is p-positive normal,
then En is g-positive normal as well for an integer n that is positive. It was
shown moreover that, if E = U |E| is g-positive normal for 0 < g < 1, then

by the transformation of Aluthge, E = |E| 12U |E| 12 is (g + 1
2
)-positive normal.

Rhaly [29] studied hyponormality in relation to the weighted mean matrix
whose sequence has weight and coefficients that are positive, linear, the results
given showed that it was a posinormal operator on `2. Further, the weighted
mean matrix proved to be co-positive normal, such that, there is same space
that is null and range for it and its adjoint. In conclusion, it was shown that re-
sults of posinormality obtained showed that the mean matrix with weight that
is generated by odd integers that are positive with sequence is hyponormal, a
case that is more general concerning this conjecture. Mecheri [14] carried out
a research on the generalized theorem of Weyl for positive normal operators
where results showed that generalized theorem for Weyl holds for f(E) if E is
conditionally totally positive normal or totally positive normal was provided,
such that there is a function f◦ that is analytic in a neighborhood that is open
for σ(E). Posinormality was defined equivalently to the one given by Rhaly
[3]. Hence, T◦ as an operator is positive normal whenever a coisometry V ∗ and
a non-negative bounded Hilbert space operator P, then T = T ∗PV ∗. It was
realized that a large class of posinormal operator contains other classes such
as hyponormal operators, M - hyponormal operators and dominant operators.
Itoh [13] commented on the existence of hyponormal operators under the con-
dition that [T ∗, T ] is positive, implying that if T ∗ is hypornormal, then it is
depicted that T is referred to as cohyponormal. That one was not enough,
from hyponormality and cohyponormality, another operator developed such
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that in the case of T being both hyponormal or cohyponormal, then it is re-
ferred to as seminormal. If T is by any chance restricted in an operator that is
normal to a sub-space that is invariant, then it is known as sub-normal. Rhaly
[25] showed that all unilateral weighted shifts that are injective, are supra-
posinormal. Kostov and Todorov [8] introduced operators called polynormi-
ally positive normal operators, which is a natural extension of hyponormality
and posinormality operators. Further, they constructed a family generation of
eigen distributions, invariants that are unitary and developed a model function
for this class. Elaborately, it was discovered that carrying an extension on op-
erators that are hyponormal to operators possessing the property =T ⊂ =T ∗,
positive normal operators are obtained. The class of polynormially posinormal
operators comprises of all nilpotent operators, finitely dimensional operators
together with all posinormal operators, which renders it larger than the class
of M - hyponormal operators. Senthil [34] investigated continuity of spectrum
for a (p, k)-quasipositive normal operator alongside (p, k)-quasi-hyponormal
operator. Further, the (p, k)-quasipositive normal operator were shown to be
a pole for the adjoint operator taken as a set of the resolvent. Thus, it is very
interesting indeed to carry out a study on operators because at this juncture,
going by the developments mentioned above, Rhaly [26] further remarked that
if A ∈ B(H) is to belong to the subclass of quasiposinormal, then A has to
be normal and with the presence of L ∈ B(H) as interrupter, EE∗ = E∗LE,
or equivalently, [E∗, E] = E∗(I −L)E. Here we see double observations which
implies more requirements that L be hermitian and non-negative, EE∗ her-
mitian, then every operator E in our sub-class should obey E∗L∗E = E∗LE;
since 〈LEf,Ef〉 = 〈E∗LEf, f〉 = ‖E∗f‖2 ∀ f and interrupter L is positive on
RanE (the range of E) which is called a posinormal operators. Further on posi-
normal, there exists another class called coposinormal operator E which exists
under the condition that E∗ is posinormal. Itoh [13] studied posinormality op-
erators by their characterizations and spectral properties given by Rhaly[25]
and gave an extension of the characterization of posinormal operators. Fur-
ther, p-posinormal operators were introduced of which a study was carried on
them, showing that the same operators (p-posinormal) are M -paranormal. Lee
[11] studied posinormality and used the results to give a conjecture on indices
of p-posinormal operators where it was shown that E is p-positive normal then
En implies p-posinormality for all non-negative integers n was given. Further,
a result was given that E = U |E| is p-positive normal for 0 < p < 1, the trans-

formation of Aluthge Ẽ = |E| 12U |E| 12 is (p+ 1
2
)-positive normal where T as an

operator can be decomposed to E = U |E| with U an isometry that is partial
and |E| is the square root of E∗E with Y (U) = Y (|E|) and the condition that is
kernel Y (U) = Y (|E|) determining U uniquely and the decomposition of polar
E was as well given. Duggal and Kubrusly [10] investigated Weyl’s theorems
for posinormal operators. The study was possible after presenting a survey on
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posinormal operators in which two classical problems restricted to this class
of operators were considered. Since transitive operators are quasi-invertible
and since invertible operators are posinormal, unique factorization for invert-
ible transitive operators were given and a characterization for transitive totally
hereditarily normaloid contractions with compact defect operator was proved.
Moreover, the conditions for dominant operators to satisfy Weyl’s theorem
were given alongside exhibiting counterexamples to three incorrect statements
of current literature on posinormality of operators was given. Sivamani [39]
studied posinormality of which was extended to ∗para-normal, quasi-positive
normal and quasi ∗ para-normal operators on composition of space in Fock,
were characterized. Much of this study has been done on the properties on the
operators that are Hardy, Berg-man, and spaces in Bloch on the plane that is
complex or ball with unit in Cn. Further, bounded and compact composition
operator on the Fock were discussed alongside some classes of composition.
The spaces in Fock F is a space in Hilbert of functions that are holomorphic
on Cn with intrinsic product 〈x, y〉 = 1

(2π)h

∫
Ch x(z)y(z)e

−1
2
|y|2 dl(z) where l

represents a measure on Cn Lebesgue. Rhaly [24] did an introduction of a su-
per class of the positive normal operators which were called supraposinormal
operators for which the determination of conditions that sufficiently qualify
supraposinormal operator to be posinormal and hyponormal, was carried out.
Further, provided a short proof of a result that is well known, the hyponor-
mality of Ck which refers to the generalization of order one Cesàro operators
for k ≥ 1 with an establishment of a connection that exists between this su-
perclass and some recent publications on conditions that sufficiently qualify a
lower triangular matrix, that is factorable, to be hyponormally linear operator
which are bounded on `2. Rhaly [25] developed on posinormal operators and
in relation to all other operators discussed prior, established that an operator
A such that A ∈ B(H), is supra-positive normal if positive operators L and
M on H exists, then ELE∗ = E∗ME, with one of L,M has range that is
dense. Are at times called interrupters. Okelo[21] established the characteris-
tics of supraposinormal operators in dense norm-attainable classes . Going by
this studies, another class of cosupraposinormality will come out clearly where
following the pattern created in getting coposinormality, it suffices that A is
cosupraposinormal under one condition that A∗ is supraposinormal. Bachir
[1] studied the Fugled-Putnam theorem of operators and used the concepts to
extend it to certain posinormal operators. In the study, asymmetric perspec-
tive of the Fuglede-Putnam was considered to give proofs on a given positive
normal operators. Further, as a consequence of this results, the induction of
the range on derivations that are general of these sets of operators were proved
to be orthogonal to their kernel. In [8] the author contributed to the study
of the theorem of Fuglede-Putnam in relation to (p, q)-quasipositive normal
together with p, q-Coposinormal operator purely in generalizing posinormal
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operators and coposinormal operators to non-normal operators. Further, the
author proved the theorem to supra class posinormal oprators called supra-
posinormal operators and co-supra class posinormal operators called cosupra-
posinormal operators. Kumar and Kiruthika [36] showed that operators of Tn
group operators that are sequential in (p, k)-Quasiposinormal operators that
are convergent to the topology that is normal to T within the class, then,
the function spectra, Weyl spectra, Browder spectra and essentially surjective
spectra, are T continuous while, taking T to be a (p, k)- quasipositive normal
and λ ∈ π00(T ∗), it suffices T̃ to be a pole of a set that resolves to T ∗. Further,
it was depicted that if there exists a continuous spectrum at T ∈ B(H), then
the spectrum is also continuous at T. Further, an analogy for a sequence Tn in
(p, k)- quasiposinormal which is convergently normed to T, it suffices that the
spectrum is also T continuous and T ∗, which was referred to a point of continu-
ity of σea. Obogi, Asamba and Okelo [20] carried a research on posinormality
operators with an emphasis on the characterization of numerical ranges. In the
study, H was a space of complex Hilbert with inner product 〈., .〉 equipment
and B(H) an algebraic operator that is linear and bounded acting on H. The
range of numerals of linear operator A that is complex, linear and bounded on
a space H of Hilbert, is a set W (A) = {〈Ax, x〉 : x ∈ H, ‖x‖ = 1}. The radius
of numerals A ∈ B(H) was used to investigate the numerical range operators
acting on spaces of Hilbert that are complex. Characterization of numerical
ranges on positive normal operators for Hilbert spaces that are dimensionally
infinite and are complex for a posinormal operator A,W (A) to be nonempty,
always and is an ellipse whose foci are the eigenvalues of A, were shown. Trieu
and Rhaly [40] studied coposinormality in relation to the Cesàro matrices. The
study showed that the matrices of Cesàro for any orders are co-posinormal by
employing positive normality of interrupter that is diagonalized and uses the
algorithm of Zeilberger assisted by maple computation. Veluchamy and Thu-
lasimani [41] still worked on posinormality operators where the authors em-
phasized on factorization of posinormal operators in Hilbert spaces. Mecheri
[15] studied Weyl’s theorem where by they defined an operator to be Weyl
if the index of Fredholm is zero. Hence, this concept was used to give the
generalized theorem for posinormal operators. It was shown that the gen-
eralized theorem for f(A) holds if A is conditionally totally positive normal
or totally positive normal function f◦ that is analytical in a neighbourhood
of σ(A) that is open. Further, the author gave results of totally posinormal
operator in relation to generalized Weyl’s theorem whenever it holds or not.
Rwenyo, Sabasi and Okelo [32] ventured their study in further characterization
of posinormal operators whereby they established norm inequalities for posi-
normal operators and characterized further posinormal operators. The results
obtained from this study were used to determine the areas in which posinor-
mal operators are applicable in other mathematically related fields such as in
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representation of quantum observances and investigating the spectrum of var-
ious linear operators. Gopal [4] studied posinormality operators and used the
knowledge to give an analogy on k-quasiposinormal weighted composition op-
erators. For integer k that is non-negative, an operator A is k-quasiposinormal
if A∗k(AA∗)Ak ≤ c2A∗(k+1)A(k+1) for some c > 0. Further, the author described
sufficiently the conditions that qualify operators that fall under weighted com-
position to be k-quasiposinormal operators. Sekar, Seshaiah, Senthil and Naik
[37] studied quasi class operators where they studied Browder and a-Browder
for k-quasi-∗-class a operators. In the study, a k-quasi-∗-class A operator E
on the space of Hilbert H is complex if E∗k(|E2| − |E∗|2)Ek ≥ 0 with k a
number that is natural with the proofs of Browder, Browder’s generalization,
a-Browder’s, and the theorem of a-Browder for k-quasi-∗-class A operators
were given. Janfada and Maleki [12] extended the theorem of Fuglede-Putnam
where they showed that if E is k-quasihyponormal such that EX = XF, ∀
E ∈ C2(H), then E∗ = XF ∗. Also, it was clear that these class of operators
induces the generalization of the kernel of inner derivations and the range that
are orthogonal. For complex spaces of Hilbert H and G, B(H,G) represents
the space of linear operators that are bounded from H to G. In case when
H and G were identified B(H,G) was shortened to B(H), not forgetting that
C2(H) and C1H denoted the class of Hilbert-Schmidt and the class of trace op-
erators respectively to B(H). Further, a two-sided -∗-ideal is formed in C2(H)
and B(H) with C2(H) being a space of Hilbert with the inner product defined
by 〈E,F 〉 = Σ〈Eei , Fei〉 = tr〈F ∗E〉 = tr〈EF ∗〉 with {ei} a basis of H that is
orthonormal and tr(.) stands for a trace that is natural on C1(H). So a normed

operator X with Hilbert-Schmidt in C2(H) is represented by ‖E‖2 = 〈E,E〉 12 .
Okelo [21] studied operators in general and used the concept to give analogy
of norm-attainability of some elements. The author presented new findings on
conditions that sufficiently that qualify norm-attainable to be Hilbert space op-
erators. Moreover, conditions for norm-attainability for elementary operators
and generalized derivations were also established. The main results showed
that for E ∈ B(H), ψ ∈ w0(E) and ϕ > 0, then an operator G ∈ B(H) exists
for ‖E‖ = ‖G‖ for as long as ‖E−G‖ < ϕ. Furthermore, ∃ § ∈ H, ‖G§‖ = ‖G‖
with 〈Z§, §〉 = ψ. Nyakiti, Okongo and Okelo [19] studied on projective tensor
norms and norm attainable α-derivation. They showed that if µ = Σiai ⊗ bi
belongs to VΓ ⊗p WΓ and δN on µ is a norm-attainable α-derivation given by

δN = δ
(1)
N + δ

(2)
N then, ‖δN‖ ≤ ‖δ(1)

N + δ
(2)
N ‖ ≤ 2‖αN‖ holds. Hong, Wang and

Gao [9] studied the norms of Hilbert spaces and used the concepts to give an
analogy of norms of elementary operators. They gave a prove that the least up-
per bound of {‖∑n

i=1AiXBi‖ : X ∈ B(H), ‖X‖ ≤ 1} = sup{‖∑n
i=1AiEBi‖ :

EE∗ = E∗E = I, E ∈ B(H)}. Moreover, a proof that an operator X0 ex-
ists with ‖X0‖ = 1 such that ‖∑n

i=1AiX0Bi‖ = sup{‖∑n
i=1AiXBi‖ : X ∈

B(H), ‖X‖ ≤ 1 if and only if there exists a unitary U0 ∈ B(H) such that



68 N. C. Nyamwaya, R. K. Obogi and Benard Okelo

‖∑n
i=1AiU0Bi‖ = sup{‖∑n

i=1AiXBi‖ : X ∈ B(H), ‖X‖ ≤ 1} Nathan [17]
studied supercyclic operators and showed that operators that are linear on
spaces of Hilbert whose subspaces have dimension n with an orbit that is
dense and not of dimension (n − 1), leads to the discovery of operators re-
ferred to the n-super-cyclic. Also results for operators that are co-hyponormal
being n-super-cyclic were given. Further, it was proved there exists n circles
at the central point of the origin in which there is an intersection to one of
these circles by each component of the spectra for an n-super-cyclic operator.
Sid [38] studied quasinormal operators and gave an extension of the concept
to properties that are normal, obeys the property of Bishop on the spaces of
Hilbert, as well proved the characteristics of n-power quasi-normal the opera-
tors, T ∈ [nQN ], described in the publication of Sid Ahmed of the year 2011.
Particularly, it was shown that the property of an invariant translation is sat-
isfied by operator T ∈ [nQN ] which when not invertible, it isn’t super-cyclic.
Also, a sub-scalar T ∈ [2QN ] ordered m was studied to be equivalent to re-
striction of operators in specific, scalar operators of order M to a sub-space
that is invariant. Senthilkumar [34] and Kiruthika [35] studied the continuity
property of (p, k)-quasipositive normal and (p, k)-quasi-hyponormal operators
which are not the spectrum of posinormal operators. Some properties such
as characteristics of posinormal operators and supraposinormal operators to-
gether with their relationships in norm attainable classes have not been fully
investigated. Therefore, the study of supraposinormal operators and posinor-
mal operators is very crucial more so in terms of their characteristics that
relates one operator to another. Particularly, the discipline is connected and
applied to quantum theory among others. All these constitute a non-passive
study in supraposinormal operators. This study therefore is to characterize
the supraposinormal operators and in norm-attainable classes.

2 Preliminaries

This sections provides some definitions which are useful in the sequel.

Definition 2.1 ([4], Definition 3.10) An operator E ∈ B(H) is said to
be normal if EE∗ = E∗E, where, E∗ is the adjoint of E.

Definition 2.2 ([9], Definition 3.6) An operator E is linear if for f, g
and scalar ψ, E(f + g) = E(f) + E(g) and E(ψf) = ψE(f).

Definition 2.3 ([3], Definition 2.2) If E ∈ B(H), then E is positive
normal if for X > 0, EE∗ = E∗XE. An operator E is called co-posinormal if
and only if E∗ is positive normal.
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Definition 2.4 ([24], Definition 2.5.) If E ∈ B(H), then E is supra-
posinormal if for X,M > 0, EXE∗ = E∗ME. An operator E is called co-
supraposinormal if and only if E∗ is supraposinormal.

Definition 2.5 ([33], Definition 1.1) An operator E ∈ B(H) is quasi-
posinormal operator if E∗(E∗E)E ≤ E∗(γ2(EE∗))E or simply if the Range(E2) ⊆
Range(E∗).

Definition 2.6 ([3], Definition 3.10) An operator E is hermitian if E =
E∗.

Definition 2.7 ([25], Definition 2.1.) An operator E is hyponormal if
‖E∗y‖ ≤ ‖Ey‖ for every y ∈ H.

Definition 2.8 ([26], Definition 2.4.) An operator E is cohyponormal if
E∗ is hypornormal.

Definition 2.9 ([30], Definition 2.7.) An operator E ∈ B(H) is called
dominant if (T − λ)(T − λ)∗ = Mλ(T − λ)∗(T − λ), for each λ ∈ M and
Mλ > 0.

Definition 2.10 ([26], Definition 2.3.) An operator E is said to be semi
- hyponormal if it is both hyponormal and cohyponormal.

Definition 2.11 ([17], Definition 3.2) Two operators e, g ∈ H are or-
thogonal if 〈e, g〉 = 0, denoted by e ⊥ g.

3 Main results

In this section, we give the main results of this study. First, we state some
auxiliary results before embarking on the main results.

Proposition 3.1 Let S be a supraposinormal operator on a separable Hilbert
space H with SPS∗ = S∗QS and P ≥ 1 ≥ Q ≥ 0. Then S is posinormal.

Proof. Let S be supraosinormal such that PS∗ = QS. Squaring S∗ on the
left side and S on the right side of we have P{S∗}2 = Q{S}2 such that when
expanded we will have PS∗S∗ = QSS. Adjoining S∗ on the side of left and
S on the side of right we will have PSS∗ = QS∗S. Rearranging the equation
we will have SPS∗ = S∗QS. If we let P to be invertible such that PP−1 = I,
the equation will be SS∗ = S∗QS which is a posinormal operator. Hence, S
is posinormal.



70 N. C. Nyamwaya, R. K. Obogi and Benard Okelo

Proposition 3.2 Let S be a supraposinormal operator on a separable Hilbert
space H with SPS∗ = S∗QS and P ≥ 1 ≥ Q ≥ 0. Then S is coposinormal.

Proof. For coposinormality, we show that S∗ is posinormal. Let, PS∗ = QS.
Squaring both sides we have (PS∗)2 = (QS)2 which expands to (PS∗)(PS∗) =
(QS)(QS). Factorizing P on the left and Q on the right we have P (S∗S∗) =
Q(SS). Adjoining S∗ on the left and S on the right we have P (S∗S) = Q(SS∗).
Rearranging the equation we have S∗PS = SQS∗. Taking P to be invertible
we will have S∗S = SQS∗. This shows that S∗ is posinormal, hence proving
coposinormality.

Proposition 3.3 Let S be a supraposinormal operator on a separable Hilbert
space H with SPS∗ = S∗QS and P ≥ 1 ≥ Q ≥ 0. Then S is hyponormal.

Proof. We let S be supraposinormal such that S∗PS = SQS∗ and we know
that S∗PS = SQS∗ is posinormal for as long as P is invertible such that it
becomes S∗S = SQS∗ which can also be given as S∗S = λ2SS∗, for as long
Q = λ2. If M = λ2, the same equation becomes S∗S = MSS∗, for all M > 0.
The equation qualifies to be M -hyponormal of which for x ∈ H and S ∈ B(H),
the same equation can be given by ‖ Sx ‖≤ M ‖ S∗x ‖ . Squaring both sides
we have

(‖ Sx ‖)2 ≤ (M ‖ S∗x ‖)2.

When we expand both sides the equation becomes

Sx, Sx ≤M2S∗x, S∗x.

Adjoining Sx on the left and S∗x on the right, the equation becomes

S∗Sx, x ≤M2SS∗x, x.

Rearranging gives
S∗Sx, x−M2SS∗x, x ≤ 0.

Since M > 0, we take an arbitrary value such that M = 1 which makes the
equation to become

S∗Sx, x− 12SS∗x, x ≤ 0

which brings the equation to be

S∗Sx, x− SS∗x, x ≤ 0.

On factorizing the equation we will have

〈{S∗S − SS∗}x, x〉 ≤ 0.
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Proposition 3.4 Let S be a supraposinormal operator on a separable Hilbert
space H with SPS∗ = S∗QS and P ≥ 1 ≥ Q ≥ 0. Then S is dominant.

Proof. Let S be supraposinormal such that SPS∗ = S∗QS. Now, S being
supraposinormal is posinormal whenever the operator P is invertible if PP−1 =
P−1P = I, such that the equation becomes SS∗ ≤ λ2S∗S for Q = λ for
which λ ≥ 0. Further, we have shown that it is hyponormal for which λ = 1
such that the equation becomes SS∗ ≤ S∗S. We use the equation, ‖ (S −
λ)∗x ‖≤ Mλ ‖ (S − λ)x ‖ . Squaring both sides the equation becomes [S −
λ]∗x, [S−λ]∗x ≤Mλ[S−λ]x,Mλ[S−λ]x. Adjoining {[S−λ]∗x} on the left and
{[S−λ]x} on the right, we have the following equation {[S−λ][S−λ]∗x, x} ≤
{M2

λ [S−λ]∗[S−λ]x, x}. By the definition of C∗-algebra, we get that ‖ a∗a ‖=‖
a ‖2 applying this concept in our equation {[S − λ]∗x}2 ≤ M2

λ{[S − λ]x}2

since {[S − λ]x} is an adjoint operator. Now we take square roots on both

sides such that {[S − λ]∗x}2• 1
2 ≤ M

2• 1
2

λ {[S − λ]x}2• 1
2 which is simplified to

{[S−λ]∗x} ≤Mλ{[S−λ]x}. Applying the Cauchy-Schwarz inequality becomes
‖ {[S − λ]∗x} ‖≤‖ {Mλ[S − λ]x} ‖ .

Lemma 3.5 Let E ∈ NA(H) be a posinormal operator. If E is invertible,
then E−1 is supraposinormal.

Proof. Let E be posinormal such that for p > 0, then P 2E∗E − EE∗ ≥ 0,
and adding EE∗ both sides such that P 2E∗E − EE∗ + EE∗ ≥ 0 + EE∗

makes the equation to be P 2E∗E ≥ EE∗. Multiplying both sides by in-
verses of EE∗ we have E−1(P 2)E∗E)(E∗)−1 ≥ E−1EE∗(E∗)−1. Simplifying the
side of the right we have E−1(P 2E∗E)(E∗)−1 ≥ (E−1E)(E∗(E∗)−1) such that
E−1(P 2E∗E)(E∗)−1 ≥ 1. Inversing both side as [E−1(P 2E∗E)(E∗)−1]−1 ≥ 1−1

which is 1
E−1(P 2E∗E)(E∗)−1 ≥ 1, further becoming to E( 1

P 2 (E∗)−1E−1)E∗ ≥
1. This makes the side of the left to be less or equal to that of the right
such that E( 1

P 2 (E∗)−1E−1)E∗ ≤ 1. Dividing both sides by EE∗ we will have
( 1
P 2 (E∗)−1E−1) ≤ 1

EE∗ which may be given as ( 1
P 2 (E∗)−1E−1) ≤ E−1(E∗)−1.

If we find the reciprocal of 1
P 2 while we commute other operators we have

(P 2E−1(E∗)−1) ≤ (E∗)−1E−1 making the left larger or equal to the right
such that, (P 2E−1(E∗)−1) ≥ (E∗)−1E−1. Finding the square root of P 2 yields
(PE−1(E∗)−1) ≥ (E∗)−1E−1 of which if we introduce an operator Q > 0
on the side of the right we will have an equalized equation, thus becoming,
(PE−1(E∗)−1) = Q(E∗)−1E−1. Rearranging P andQ becomes (E−1P (E∗)−1) =
(E∗)−1QE−1. Implying that E−1 is supraposinormal.

Theorem 3.6 Let E ∈ NA(H) be a supraposinormal operator. If E in-
vertible, then E−1 is posinormal.
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Proof. Let E be an invertible supraposinormal for which V, U > 0 and xn ∈
NA(H) V (E∗xn) = U(Exn). Taking inverses both sides makes the equation
to be [V (E∗xn)]−1 = [U(Exn)]−1. Squaring both sides, that is,

([V (E∗xn)]−1)2 = ([U(Exn)]−1)2

in which when we expand the equation, we will have

[V −1(E∗xn)−1, V −1(E∗xn)−1] = [U−1(Exn)−1, U−1(Exn)−1]

which can be written as

V −1 · V −1[(E∗xn)−1, (E∗xn)−1] = U−1 · U−1[(Exn)−1, (Exn)−1].

But by indices V −1 · V −1 = V −2 and U−1 · U−1 = U−2 which substituted in
the equation we will have

V −2[(E∗xn)−1, (E∗xn)−1] = U−2[(Exn)−1, (Exn)−1]

which can be written as

1

V 2
[(E∗xn)−1, (E∗xn)−1] =

1

U2
[(Txn)−1, (Exn)−1].

Taking the reciprocal of U−2 and V −2 and commuting the other operators,we
will have V 2[(E∗xn)−1, (E∗xn)−1] = U2[(Exn)−1, (Exn)−1].Adjoining (E∗xn)−1

on the left and (Exn)−1 on the right we will have

V 2[(E∗xn)−1, (Exn)−1] = U2[(Exn)−1, (E∗xn)−1].

Letting U to be invertible such that UU−1 = I, will have

V 2[(E∗xn)−1, (Exn)−1] = [(Exn)−1, (E∗xn)−1]

which makes the left larger or equivalent right, such that

V 2[(E∗xn)−1, (Exn)−1] ≥ [(Exn)−1, (E∗xn)−1],

showing that E−1 is posinormal.

Theorem 3.7 Let E ∈ NA(H) be supraposinormal. If E is invertible with
invertible interrupters (A,B), then its inverse E−1 is posinormal.

Proof. Let E be supraposinormal such that EAE∗ = E∗BE. Since it is invert-
ible, then there exists inverses of E and E∗ which when applied on both sides
we have

(E∗)−1EAE∗E−1 = (E∗)−1E∗BEE−1
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which can be written as (E∗)−1EAE∗E−1 = [(E∗)−1E∗]B[ET−1]. But EE−1 =
I and E∗E∗−1 = I which when substituted on the side of right, the equation
becomes (E∗)−1EAE∗E−1 = IBI, implying (E∗)−1EAE∗E−1 = B. We take
inverses on either side, we will have E∗E−1A−1(E∗)−1E = B−1 while we divide
both sides by E∗ and E we have E−1A−1(E∗)−1 = (E∗)−1B−1E−1. Letting
A−1 be invertible, we have E−1(E∗)−1 = (E∗)−1B−1E−1B is an interrupter
and hence it is positive, therefore its inverse B−1 is also positive. Hence, E−1

is posinormal.

Corollary 3.8 Let E ∈ NA(H) be a dominant supraposinormal operator,
then it is posinormal.

Proof. Let E be a dominant supraposinormal operator such that for λ, µ ∈ C,
Qµ ‖ (E − λ)∗xn ‖= Pµ ‖ (E − λ)xn ‖ for xn ∈ NA(H). Squaring both sides
we have

(Qµ ‖ (E − λ)∗xn ‖)2 = (Pµ ‖ (E − λ)xn ‖)2

which becomes

(Qµ(E − λ)∗xn, Qµ(E − λ)∗xn = (Pµ(E − λ)xn, Pµ(E − λ)xn)

and which can further be expressed as

(Qµ ·Qµ)(E − λ)∗xn, (E − λ)∗xn = (Pµ · Pµ)(E − λ)xn, (E − λ)xn).

But Qµ ·Qµ = (Qµ)2 and Pµ · Pµ = (Pµ)2 which when substituted we have

Q2
µ(E − λ)∗xn, (E − λ)∗xn = P 2

µ(E − λ)xn, (E − λ)xn).

Adjointing E − λ)∗xn on the side of left and E − λ)xn on right we have

Q2
µ(E − λ)∗xn, (E − λ)xn = P 2

µ(E − λ)xn, (E − λ)∗xn).

Taking the square roots of Q2
µ and P 2

µ we have

Qµ(E − λ)∗xn, (E − λ)xn = Pµ(E − λ)xn, (E − λ)∗xn).

Rearranging Qµ and Pµ we have

(E − λ)∗xnQµ(E − λ)xn = (E − λ)xnPµ(E − λ)∗xn).

Taking Qµ to be invertible such that QµQ
−1
µ = 1, then

(E − λ)∗xn, (E − λ)xn = (E − λ)xnPµ(E − λ)∗xn)

which is a posinormal equation.
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Corollary 3.9 Let E ∈ NA(H) be p-supraposinormal, then E is posinor-
mal.

Proof. Let E be p-supraposinormal such that for S,M > 0 we have (SE∗)P =
(ME)P . Squaring both sides we get [(SE∗)2]P = [(ME)2]P which when ex-
panded we have (SE∗, SE∗)P = (ME,ME)P which in another form is express-
ible as [S ·S(E∗, E∗)]P = [M ·M(E,E)]P . But [S ·S] = S2 and [M ·M ] = M2

which when substituted we have [S2(E∗, E∗)]P = [M2(E,E)]P . Adjoining E∗

on the side of the left and E on the side of the right we have [S2(E,E∗)]P =
[M2(E∗, E)]P . Taking P = I we have [S2(E,E∗)]I = [M2(E∗, E)]I which im-
plies S2(E,E∗) = M2(E∗, E). Taking square root of S2 and M2 we make the
equation to be S(E,E∗) = M(E∗, E) alongside rearranging S and M we have
(ESE∗) = (E∗ME). Taking S to be invertible such that SS−1 = I we shall
have the same equation as (E,E∗) = (E∗ME) which is a posinormal operator.

4 Open Problems

The results obtained in this work are specific to the supraposinormal operators
on complex Hilbert spaces. Can characterization of cosupraposinormal oper-
ators when H is complex and norm-attainable suffice? Moreover, can these
results be extended in a general complex Banach space setting?
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