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Abstract

In the present paper, we parametrically represent surfaces
passing through an involute of a prescribed curve as a line
of curvature. We express these surfaces by using the Frenet
vector fields of the involute curve. We give the sufficient con-
straints for the coefficients of the Frenet vector fields. Finally,
we present some illustrative examples.
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1 Introduction

Curves and surfaces appear in every differential geometry book [1, 2, 3, 4].
Most existing work related with surfaces concentrated on forward analysis:
given a surface, find and classify special curves on the surface in question.
However, the most relevant problem is the reverse one: given a curve, construct
surfaces possessing it as a common special curve. Wang et al. [5] handled the
problem of construction of a surface family upon a given curve and obtained
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constraints for this curve to be a geodesic curve on every representative of
the pencil. In 2011, authors [6] changed the given geodesic curve to a line
of curvature and represented surfaces parametrically with a common line of
curvature. Bayram et al. [7] obtained the necessary and sufficient constraint
for a given curve to be an asymptotic curve on every member of a surface
pencil. In [8], authors obtained similar results in the Galilean 3-space. Atalay
and Kasap [9] studied surfaces with a common null asymptotic curve. Ergün
et al. [10] constructed similar surfaces in 3-dimensional Minkowski space.
Bayram and Bilici [11] expressed a surface pencil interpolating an involute
curve as a common asymptotic curve.

This kind of studies find operations in computer graphics and image pro-
cessing, variant industrial operations, such as cloth manufacturing, painting
and cutting way, textile manufacturing, hose manufacturing, plain-metal-based
manufacturing, architectural computer aided design, astrophysics and astron-
omy [12, 13, 14, 15, 16].

In this paper, we construct surfaces using an involute of a given curve and
obtain sufficient condition such that it is a line of curvature on every member
of this family. Finally, we present some illustrative examples.

2 Preliminaries

A curve α (s) , L1 ≤ s ≤ L2, is called a parameter curve on a surface P (s, t)
in R3 if P (s, t0) = α (s) for a fixed t0. In the present study, we denote the
derivative of α by α′ and assume that α is a regular curve with nonvanishing
acceleration, that is, α′ (s) 6= 0 6= α′′ (s) , L1 ≤ s ≤ L2. Then, the unit tangent,
principal normal, and binormal vector fields of the curve at the point α (s) are
defined by T (s) = α′ (s) , N (s) = α′′

‖α′′‖ and B (s) = T (s)×N (s), respectively.

The set {T (s) , N (s) , B (s)} is called the Frenet frame field along α (s). The
following formula exist for the Frenet frame

d

ds

 T (s)
N (s)
B (s)

 =

 0 κ (s) 0
−κ (s) 0 τ (s)

0 −τ (s) 0

 T (s)
N (s)
B (s)

 ,

where τ (s) = −〈B′ (s) , N (s)〉 and κ (s) = ‖α′′ (s)‖ are the so called torsion
and curvature of the curve α (s), respectively [2].

Let α (s) and β (s) , L1 ≤ s ≤ L2, be two curves. If β intersects the tangent
vector fields of α orthogonally, then β is called an involute of α. Alternatively,
the orthogonal trajectory of the tangent vector fields of the curve α is called
an involute of the curve α. An involute of a curve α (s) with unit speed is
given by

β (s) = α (s) + (c− s)T (s) , (1)
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where c is a constant real number and T (s) is the unit tangent vector field of
the curve α (s) [4]. For consistency, we assume that c− s 6= 0, L1 ≤ s ≤ L2.

When a rigid body moving along an arclength curve α (s), the motion
in question contains translation along and rotation about α. The rotation
is characterized by an angular velocity vector D that satisfies T ′ = D × T,
B′ = D × B and N ′ = D × N. The vector D is called the Darboux vector.
Darboux vector is given by D = τT + κB, in terms of Frenet vector fields
T, N and B [3]. Also, we have κ = ‖D‖ cos θ, τ = ‖D‖ sin θ, where θ is the
angle between the binormal vector field B (s) and the Darboux vector of α and
0 ≤ θ < π

2
. Observe that θ = arctan τ

κ
.

Let α (s) , L1 ≤ s ≤ L2, be an arclength curve and β (s) , L1 ≤ s ≤ L2, be
an involute of α. Then one has T ∗ (s)

N∗ (s)
B∗ (s)

 =

 0 1 0
− cos θ 0 sin θ
sin θ 0 cos θ

 T (s)
N (s)
B (s)

 , (2)

where {T ∗ (s) , N∗ (s) , B∗ (s)} and {T (s) , N (s) , B (s)} are Frenet frame fields
of the curves β and α, respectively, and θ is the angle between the binormal
vector field B (s) of α and the Darboux vector D.

3 Main results

Assume that we have a unit speed parametric space curve α (s) , L1 ≤ s ≤ L2,
and ‖α′′ (s)‖ 6= 0, L1 ≤ s ≤ L2. Let β (s) , L1 ≤ s ≤ L2, be an involute of the
given curve α (s) .

Surfaces interpolating β (s) are given in the parametric form as

P (s, t) = β (s) + u (s, t)T ∗ (s) + w (s, t)B∗ (s) + v (s, t)N∗ (s) , (3)

where u (s, t) , w (s, t) and v (s, t) are real valued C1 functions. They are called
marching-scale functions and {T ∗ (s) , N∗ (s) , B∗ (s)} is the Frenet frame field
of the curve β. With the help of Eqn. (2) we may express Eqn. (3) in terms
of Frenet frame field {T (s) , N (s) , B (s)} of the curve α as

P (s, t) = β (s) + (w (s, t) sin θ − v (s, t) cos θ)T (s) (4)

+ (v (s, t) sin θ + w (s, t) cos θ)B (s) + u (s, t)N (s) ,

where L1 ≤ s ≤ L2, T1 ≤ t ≤ T2.

Remark 3.1 Note that changing marching-scale functions results in differ-
ent surfaces interpolating β (s) as a common curve.
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Our aim is to find the sufficient constraints for which the curve β (s) is a
parameter curve and a line of curvature on the surface P (s, t). First of all,
since β (s) is a parameter curve on the surface P (s, t), we have

u (s, t0) = w (s, t0) = v (s, t0) ≡ 0, L1 ≤ s ≤ L2, ∃t0 ∈ [T1, T2] . (5)

Secondly, we will find the constraint such that the curve β is a line of
curvature on the surface P (s, t) . The normal vector field of P (s, t) can be
expressed as

n (s, t) =
∂P (s, t)

∂s
× ∂P (s, t)

∂t
.

Using Eqns. (2) and (4) , the normal vector field can be expressed along
the curve β as

n (s, t0) = φ1 (s, t0)T
∗ (s) + φ2 (s, t0)B

∗ (s) + φ3 (s, t0)N
∗ (s) , (6)

where {
φ1 (s, t0) ≡ 0, φ2 (s, t0) = κ (c− s) ∂v

∂t
(s, t0) ,

φ3 (s, t0) = −κ (c− s) ∂w
∂t

(s, t0) ,

κ is the curvature of the curve α.

Theorem 3.2 If the surface normals through a surface curve cast a devel-
opable ruled surface, then it is a line of curvature on that surface [2].

Let ψ (s, t) = β (s) + tn1 (s) be a surface where n1 (s) = sinϕB∗+ cosϕN∗,
the vector functions B∗, N∗ are the binormal and the pirincipal vector fields
of β (s) , respectively. According to Theorem 3.2, β (s) is a line of curvature on
the surface P (s, t) if and only if ψ (s, t) is developable and n (s, t0) is paralell
to n1 (s) . The surface ψ (s, t) is developable if and only if

det (β′, n1, n
′
1) = 0⇔ θ (s) + ϕ (s) = constant.

n (s, t0) is paralell to n1 (s) if and only if

φ2 (s, t0) = λ (s) sinϕ, φ3 (s, t0) = λ (s) cosϕ,

where L1 ≤ s ≤ L2, T1 ≤ t, t0 ≤ T2 (t0 fixed), λ (s) 6= 0, ϕ is the angle
between the principal normal vector field N∗ (s) of β and the surface normal
vector field n (s, t0) .

Theorem 3.3 Let α (s) , L1 ≤ s ≤ L2, be an arclength curve with nonzero
curvature and β (s) , L1 ≤ s ≤ L2, be its involute. β is a line of curvature on
the surface (3) if{

u (s, t0) = w (s, t0) = v (s, t0) ≡ 0,
θ + ϕ = constant, φ2 (s, t0) = λ (s) sinϕ, φ3 (s, t0) = λ (s) cosϕ,

(7)
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where T1 ≤ t, t0 ≤ T2 (t0 fixed), L1 ≤ s ≤ L2, λ (s) 6= 0, ϕ is the angle
between the principal normal vector field N∗ (s) of β and the surface normal
vector field n (s, t0) and θ is the angle between the binormal vector field of the
curve α and the Darboux vector.

For a better analysis and simplification, we consider the marching-scale
functions factored into two factors as

u (s, t) = p (s)U (t) , w (s, t) = r (s)W (t) , v (s, t) = q (s)V (t) ,

where L1 ≤ s ≤ L2, T1 ≤ t ≤ T2 and p (s) , q (s) , r (s) , U (t) , V (t) , W (t) are
C1 functions and p (s) , q (s) , r (s) are not uniformly zero.

Proposition 3.4 Let α (s) , L1 ≤ s ≤ L2, be an arclength curve with
nonzero curvature and β (s) , L1 ≤ s ≤ L2, be its involute. β is a line of
curvature on the surface (3) if

U (t0) = W (t0) = V (t0) = 0,
θ (s) + ϕ (s) = constant,

−κ (c− s) r (s)W ′ (t0) = λ (s) cosϕ,
κ (c− s) q (s)V ′ (t0) = λ (s) sinϕ,

(8)

where L1 ≤ s ≤ L2, T1 ≤ t, t0 ≤ T2 (t0 fixed), λ (s) 6= 0, ϕ is the angle
between the principal normal vector field N∗ (s) of β and the surface normal
vector field n (s, t0) and θ is the angle between the binormal vector field of the
curve α and the Darboux vector.

4 Examples

Example 1 : Let us consider the arclength circle α (s) = (cos s, sin s, 0). Now,
it is straight forward to show that

T (s) = (− sin s, cos s, 0) ,

N (s) = (− cos s,− sin s, 0) ,

B (s) = (0, 0, 1) ,

θ = 0, κ = 1, τ = 0.

Letting c = 0 in Eqn. (1) , we have

β (s) = (s sin s+ cos s, sin s− s cos s, 0) ,
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as an involute of α with Frenet vectors

T ∗ (s) = (− cos s,− sin s, 0) ,

N∗ (s) = (sin s,− cos s, 0) ,

B∗ (s) = (0, 0, 1) .

If we choose u (s, t) ≡ 0, v (s, t) = −
√
2
2

sin t, w (s, t) =
√
2
2

sin t, λ (s) =
s, t0 = 0 and ϕ = π

4
then Eqn. (8) is satisfied and we get the surface

P1 (s, t) = β (s) + u (s, t)T ∗ + w (s, t)B∗ (s) + v (s, t)N∗

=

(
cos s+

(
s−
√

2

2
sin t

)
sin s, sin s−

(
s−
√

2

2
sin t

)
cos s,

√
2

2
sin t

)

2 ≤ s ≤ 5, 0 ≤ t ≤ 3, possessing β as an involute line of curvature (Fig. 1).

Figure 1: P1 (s, t) as a representative of surfaces and its involute line of curva-
ture β.

Example 2 : Let α (s) =
(
a1 cos s

a3
, a1 sin s

a3
, a2s
a3

)
be an arc length helix,
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where a1, a2, a3 ∈ R, a21 + a22 = a23, a1 > 0. It is easy show that

T (s) =

(
−a1
a3

sin
s

a3
,
a1
a3

cos
s

a3
,
a2
a3

)
,

N (s) =

(
− cos

s

a3
,− sin

s

a3
, 0

)
,

B (s) =

(
a2
a3

sin
s

a3
,−a2

a3
cos

s

a3
,
a1
a3

)
,

κ =
a1
a23
, τ =

a2
a23
, θ = arctan

a2
a1
.

So we have

β (s) =

(
a1 cos

s

a3
− a1
a3

(c− s) sin
s

a3
,

a1 sin
s

a3
+
a1
a3

(c− s) cos
s

a3
,
ca2
a3

)
as an involute curve of α with Frenet vector fields

T ∗ (s) =

(
− cos

s

a3
,− sin

s

a3
, 0

)
,

N∗ (s) = sgn (a3)

(
sin

s

a3
,− cos

s

a3
, 0

)
,

B∗ (s) = (0, 0, sgn (a3)) .

Choosing a1 =
√
3
2
, a2 = 1

2
, a3 = 1 results in θ = π

6
and if we let c =

√
3

in Eqn. (1) we get

β (s) =

(√
3

2
cos s−

√
3

2

(√
3− s

)
sin s,

√
3

2
sin s+

√
3

2

(√
3− s

)
cos s,

√
3

2

)
.

Taking the following marching scale functions u (s, t) = t, w (s, t) =
(√

3 + s
)
t, v (s, t) =

− 1√
3

(√
3 + s

)
sin t, and ϕ ≡ π

6
, t0 = 0, λ (s) = s2− 3 Eqn. (8) is satisfied and

we obtain

P2 (s, t) = β (s) + u (s, t)T ∗ (s) + w (s, t)B∗ (s) + v (s, t)N∗ (s)

=

((√
3

2
− t

)
cos s−

[√
3

2

(√
3− s

)
+

1√
3

(√
3 + s

)
sin t

]
sin s,(√

3

2
− t

)
sin s+

[√
3

2

(√
3− s

)
+

1√
3

(√
3 + s

)
sin t

]
cos s,

√
3

2
+
(√

3 + s
)
t

)
,
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0 ≤ s ≤ 3
2
, −1 ≤ t ≤ 1, as a representative of surfaces interpolating β as an

involute line of curvature (Fig.2) .

Figure 2: P2 (s, t) as a representative of surfaces and its involute line of curva-
ture β.

If we let a1 = a2 = 1
2
, a3 =

√
2
2

then we have θ = π
4

and c = 3 in formula 1
we obtain the involute of α as

β (s) =

(
1

2
cos
(√

2s
)
− (3− s)

√
2

2
sin
(√

2s
)
,

1

2
sin
(√

2s
)

+ (3− s)
√

2

2
cos
(√

2s
)
,

3
√

2

2

)
.

If we let u (s, t) = st, v (s, t) = st2, w (s, t) = e2t, ϕ = π, t0 = 0, λ (s) =
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√
3
2
es (s− 3) then Eqn. (8) is satisfied and we have

P3 (s, t) = β (s) + u (s, t)T ∗ (s) + w (s, t)B∗ (s) + v (s, t)N∗ (s)

=

(
1

2
cos
(√

2s
)
− (3− s)

√
2

2
sin
(√

2s
)
− st cos

(
2
√

3

3
s

)
+ st2 sin

(
2
√

3

3
s

)
,

1

2
sin
(√

2s
)

+ (3− s)
√

2

2
cos
(√

2s
)
− st sin

(
2
√

3

3
s

)
− st2 cos

(
2
√

3

3
s

)
,

3
√

2

2
+ est

)
,

−1 ≤ s ≤ 1, 0 ≤ t ≤ 0, 9, as a representative of surfaces accepting β as an
involute line of curvature (Fig.3) .

Figure 3: P3 (s, t) as a representative of surfaces and its involute line of curva-
ture β.

For the same curve if we choose u (s, t) ≡ 0, v (s, t) = ln (1− t) , w (s, t) =
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est2, ϕ = π
2
, t0 = 0, λ (s) =

√
3
2

(s− 3) then Eqn. (8) is satisfied and we obtain

P4 (s, t) = β (s) + u (s, t)T ∗ (s) + w (s, t)B∗ (s) + v (s, t)N∗ (s)

=

(
1

2
cos
(√

2s
)
− (3− s)

√
2

2
sin
(√

2s
)

+ (ln (1− t)) sin

(
2
√

3

3
s

)
,

1

2
sin
(√

2s
)

+ (3− s)
√

2

2
cos
(√

2s
)
− (ln (1− t)) cos

(
2
√

3

3
s

)
,

3
√

2

2
+ est2

)
,

0 ≤ s ≤ 1, − 1 ≤ t < 1, as a representative of the surfaces with an involute
line of curvature β (Fig. 4) .

Figure 4: P4 (s, t) as a representative of surfaces and its involute line of curva-
ture β.

5 Open Problem

The construction of surfaces is an interesting problem. There are several meth-
ods exist in the literature. In this present paper, we concentrated on the re-
verse analysis. Given a curve, we obtain surfaces using the involute of the
given curve and obtain surfaces accepting the involute as a line of curvature.
However, there are so many studies to conduct. Some possible future work de-
serves to be mentioned. Some constraints, such as mean curvature, Gaussian



30 M. Bilici and E. Bayram

curvature, minimality may be forced to obtain special surfaces. Same study
may be done for implicitly defined surfaces. It is possible to consider other
ambient spaces. Minkowski space, Galilean space or Heisenberg space may
be considered. Another alternative is to higher the dimension or deal with
manifolds.
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[8] Z.K. Yüzbaşı, On a family of surfaces with common asymptotic curve in
the Galilean space G3, Journal of Nonlinear Science and Applications, 9
(2016), 518-523.
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