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Abstract

In this paper, we mainly present some limit formulas re-
lated to ratios of derivatives of the k-gamma function Γk(z)
at their singularities. Furthermore, we also give a monotonic
property related to the k-gamma function. Finally, two open
problems have been posed.
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1 Introduction

The Euler gamma function is defined all positive real numbers x by

Γ(x) =

∫ ∞
0

tx−1e−tdt.
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The logarithmic derivative of Γ(x) is called the psi or digamma function. That
is

ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)
= −γ − 1

x
+
∞∑
n=1

x

n(n+ x)
,

where γ = 0.5772 . . . is the Euler-Mascheroni constant. The polygamma func-
tions ψ(m)(x) for m ∈ N are defined by

ψ(m)(x) =
dm

dxm
ψ(x) = (−1)m+1m!

∞∑
n=0

1

(n+ x)m+1
, x > 0.

Origin, history, the complete monotonicity, and inequalities of these special
functions may refer to [2, 3, 9].

In 2007, Dı́az and Pariguan [1] defined the k−analogue of the gamma func-
tion for k > 0 and x > 0 as

Γk(x) =

∫ ∞
0

tx−1e−
tk

k dt = lim
n→∞

n!kn(nk)
x
k
−1

x(x+ k) · · · (x+ (n− 1)k)
,

where limk→1 Γk(x) = Γ(x). Similarly, we may define the k−analogue of the
digamma and polygamma functions as

ψk(x) =
d

dx
ln Γk(x) and ψ

(m)
k (x) =

dm

dxm
ψk(x).

It is well known that the k−analogues of the digamma and polygamma
functions satisfy the following recursive formula and series identities (See [1,
4, 5, 6])

Γk(k) = 1, (1)

Γk(x+ k) = xΓk(x), x > 0, (2)

ψk(x) = ln k−γ
k
− 1

x
+
∑∞

n=1
x

nk(nk+x)

= −
∫∞

0
e−xt

1−e−ktdt,
(3)

and
ψ

(m)
k (x) = (−1)m+1m!

∑∞
n=0

1
(nk+x)m+1

= (−1)m+1
∫∞

0
1

1−e−kt t
me−xtdt.

(4)

At present, these functions have been extensively studied.In [13], the second
author established a completely monotonic theorem involving the generalized
digamma function. In [14], L. Yin, L.-G. Huang, X.-L. Lin and Y.-L. Wang
established a concave theorem and some inequalities for k- digamma function.
Furthermore, L. Yin, L.-G. Huang, Zh.-M. Song and X.-K. Dou[15] showed
several monotonic and concave results related to the generalized digamma and
polygamma functions.



Limit formulas and a monotonic property related to k-gamma function 3

In [7] and [8], the limit formulas

lim
z→−k

Γ(nz)

Γ(qz)
= (−1)(n−q)k q

n

(qk)!

(nk)!
(5)

and

lim
z→−k

ψ(nz)

ψ(qz)
=
q

n
(6)

for any non-negative integer k and all positive integers n and q were established
by A. Prabhu and H. M. Srivastava. Later, by using explicit formula for the
n-th derivative of the cotangent function, F. Qi obtained the following formulas

lim
z→−k

ψ(i)(nz)

ψ(i)(qz)
=
( q
n

)i+1

(7)

and

lim
z→−k

Γ(i)(nz)

Γ(i)(qz)
= (−1)(n−q)k

( q
n

)i+1 (qk)!

(nk)!
. (8)

for any non-negative integer k and all positive integers n and q in [10][11] and
[12].

It is easily known that the k-gamma function Γk(x) is single valued and
analytic over the entire complex plane, except for the points z = 0,−k,−2k, · · ·
Motivated by limit formulas (5)- (8), we present some limit formulas related
to ratios of derivatives of the k-gamma function Γk(z) at their singularities.
Finally, we also give a monotonic property related to the k-gamma function.

2 Limit formulas at their singularities

Lemma 2.1 For k > 0, then

ψk(x) =
ln k

k
+
ψ(x/k)

k
. (9)

Proof.Taking logarithms and differentiating on both sides of the formula[1]

Γk(x) = k
x
k
−1Γ

(x
k

)
, (10)

we easily obtain the proof.

Remark 2.2 Considering the formula (4), we obtain that the function ψk(x)
is strictly increasing on (0,∞). So the function ψk exists an unique root xk.
That is

ψk(xk) =
ln k + ψ(xk/k)

k
= 0. (11)
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Remark 2.3 Let k > 0.
(i) If k = 1, then xk = x0.
(ii) If k > 1, then xk < kx0.
(iii) If k < 1, then xk > kx0.
Here x0 satisfies ψ(x0) = 0 with x0 = 1.46163 . . . .

Proof. Using the formula (11), we easily complete the proof.

Remark 2.4 Using the formula (10), we easily obtain k-analogue of the re-
flection formula, the duplication formula and the multiplication formula as
follows.

Γk(x)Γk(k − x) =
π

k sin
(
πx
k

) , (12)

Γk(2x) =
k

1
2 2

2x
k
−1

√
π

Γk(x)Γk

(
x+

k

2

)
, (13)

Γk(nx) =
k

n−1
2 n

nx
k
− 1

2

(2π)
n−1
2

Γk(x)Γk

(
x+

k

n

)
· · ·Γk

(
x+

(n− 1)k

n

)
. (14)

Theorem 2.5 Let k > 0. For any non-negative integer λ and all positive
integers n, q, we have

lim
x→−kλ

Γk(nx)

Γk(qx)
= kλ(q−n)(−1)(n−q)λ q

n

(qλ)!

(nλ)!
. (15)

Proof. Using the formulas (5),(10) and substitution z = x
k
, we get

lim
x→−kλ

Γk(nx)
Γk(qx)

= lim
x→−kλ

k
nx
k
−1Γ(nx

k )
k
qx
k
−1Γ( qx

k )
= lim

x→−kλ
k(n−q)z Γk(nz)

Γk(qz)

= kλ(q−n)(−1)(n−q)λ q
n

(qλ)!
(nλ)!

.

Taking q = 1, λ = 0 in Theorem2.5, the following Corollary 2.6 holds true.

Corollary 2.6 Let k > 0. For all positive integers n, we have

lim
x→0

Γk(nx)

Γk(x)
=

1

n
. (16)

Theorem 2.7 Let k > 0. For any non-negative integer λ, i and all positive
integers n, q, we have

lim
x→−kλ

ψ
(i)
k (nx)

ψ
(i)
k (qx)

=
( q
n

)i+1

. (17)
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Proof. Using the formula (9), we easily get

ψ
(i)
k (x) =

1

ki+1
ψ(i)

(x
k

)
. (18)

The formulas (7), (18) and substitution z = x
k

leads to

lim
x→−kλ

ψ
(i)
k (nx)

ψ
(i)
k (qx)

= lim
x→−kλ

ψ(i)(nx
k )

ψ(i)( qx
k )

= lim
z→−λ

ψ(i)(nz)

ψ(i)(qz)
=
(
q
n

)i+1
.

This completes the proof.

3 A monotonic property related to k-gamma

function

Theorem 3.1 For 0 < k ≤ 1, then the function Hk(x) =
Γ′k(x+k)

x
is strictly

increasing on (0,∞).

Proof. Let 0 < x ≤ xk. Considering Remark 2.2 and Remark 2.3, we get

x
Γk(x)

H ′k(x) = xψk(x)ψk(k + x) + ψ′k(k + x)

= xψ2
k(k + x)− ψk(k + x) + xψ′k(k + x)

≥ xψ′k(k + x)− ψk(k + x)
= xkψ

′
k(k + xk)− ψk(k + xk)−

∫ xk
x
tψ′′k(k + t)dt

≥ xkψ
′
k(k + xk)− ψk(k + xk)

=
(
xk−k
k2

)
ψ
(
1 + xk

k

)
− ln k

k

> 0.

This implies that the function Hk is strictly increasing on (0, xk). Due to
x ∈ [xk,∞), the representation Hk(x) = Γk(x)ψk(k + x) reveals that the
function Hk is the product of two functions which are positive and increasing.
The proof is complete.

4 Open Problem

Open problem 4.1 Let k > 0. Compute the limit

lim
x→−kλ

Γ
(i)
k (nx)

Γ
(i)
k (qx)

for any non-negative integer λ, i and all positive integers n, q.
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Recently, K. Nantomah, E. Prempeh and S. B. Twum[6] also introduced a
new definition of gamma function with two parameters as follows:

Γp,k(x) =
(p+ 1)!kp+1(pk)

x
k
−1

(x)p,k
, x > 0

where (x)p,k = x(x+k)(x+ 2k)...(x+ pk) and lim
p→∞

Γp,k(x) = Γk(x). Naturally,

we also pose the following open problem:
Open problem 4.2 Let p, k > 0. Compute the limit

lim
x→−kλ

Γ
(i)
p,k(nx)

Γ
(i)
p,k(qx)

for any non-negative integer λ, i and all positive integers n, q satisfying nλ ≤
p, qλ ≤ p.
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