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Abstract
In this work, we study some properties and inequalities

involving derivatives of a generalized form of the Wallis’ cosine
(sine) formula. In particular, log-convexity, monotonicity,
subadditivity and subhomogeneity properties of the generalized
function are discussed.
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1 Introduction

The classical Euler’s Gamma function is usually defined as

Γ(x) =

∫ ∞
0

tx−1e−t dt

for x > 0. Closely associated with the Gamma function is the digamma or Psi
function ψ(x), which is defined as the logarithmic derivative of the Gamma
function. That is,

ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)

= −γ − 1

x
+
∞∑
n=1

x

n(n+ x)
,
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where γ = limn→∞
(∑n

k=1
1
k
− lnn

)
= 0.577215664... is the Euler-Mascheroni’s

constant.
The function

In =

∫ π
2

0

cosn t dt =

∫ π
2

0

sinn t dt =

√
π

2

Γ(n
2

+ 1
2
)

Γ(n
2

+ 1)
, (1)

where, n ∈ N = {1, 2, 3, 4, . . . } is well-known in the literature as the Wallis’
cosine (sine) formula. See for instance [1, p. 258], [5], [8] and the related
references therin. It may also be defined as

In =
1

2

Ωn

Ωn−1

=
π

2
Wn

2
=

1

2
B

(
n+ 1

2
,
1

2

)
, n ∈ N, (2)

where, Ωn = π
n
2

Γ(n
2

+1)
is the volume of the unit ball in Rn, Wn = (2n−1)!!

(2n)!!
=

1√
π

Γ(n+ 1
2

)

Γ(n+1)
is the Wallis ratio [10], and B(x, y) = Γ(x)Γ(y)

Γ(x+y)
is the classical Euler’s

beta function.
The Wallis’ formula and its related functions have been studied intensively

by several researchers. Notably are the recent works [4], [9] and [11], where
the function was applied to study some properties of a sequence originating
from geometric probability for pairs of hyperplanes intersecting with a convex
body.
In 1956, Kazarinoff [6] generalized the Wallis’ cosine formula as

H(x) =

∫ π
2

0

cosx t dt =

∫ π
2

0

sinx t dt =

√
π

2

Γ(x
2

+ 1
2
)

Γ(x
2

+ 1)
, x ∈ (−1,∞), (3)

where H(n) = In for n ∈ N.
In a recent work [7], the author studied some properties and inequalities
involving the generalized function (3). In this paper, our main objective is
to derive some inequalities involving derivatives of the generalized function. In
doing so, we study some special cases, log-convexity, monotonicity, subadditivity
and subhomogeneity properties of the generalized function. We present our
results in the following section.

2 Main Results

By differentiating m times of the generalized function (3), we obtain the more
generalized form

H(m)(x) =

∫ π
2

0

(ln cos t)m cosx t dt =
dm

dxm

{√
π

2

Γ(x
2

+ 1
2
)

Γ(x
2

+ 1)

}
, (4)
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for x ∈ (−1,∞) and m ∈ N0 = N ∪ {0}, where H(0)(x) = H(x). In particular,
if x = 0, then we obtain

H(m)(0) =

∫ π
2

0

(ln cos t)m dt = Cm, (5)

which is known in the literature as the log-cosine function [12]. It follows
swiftly from (4) that

(i) H(m)(x) is positive and decreasing if m ∈ {2k : k ∈ N0},

(ii) H(m)(x) is negative and increasing if m ∈ {2k + 1 : k ∈ N0}.

Furthermore, from definition (4), we derive the following few special cases.

H(0)(0) =
π

2
, (6)

H ′(0) =

∫ π
2

0

ln cos t dt = −π
2

ln 2, (7)

H ′(1) =

∫ π
2

0

(ln cos t) cos t dt = −1 + ln 2, (8)

H ′(2) =

∫ π
2

0

(ln cos t) cos2 t dt =
π

8
− 1

4
ln 2, (9)

H ′′(0) =

∫ π
2

0

(ln cos t)2 dt =
π3

24
+
π

2
(ln 2)2, (10)

H ′′(1) =

∫ π
2

0

(ln cos t)2 cos t dt = 1− π2

12
+ (ln 2− 1)2, (11)

H ′′(2) =

∫ π
2

0

(ln cos t)2 cos2 t dt =
π

4
(ln 2− 1)2 +

π3

48
− 3π

16
, (12)

H ′′′(0) =

∫ π
2

0

(ln cos t)3 dt = −π
3

8
ln 2− π

2
(ln 2)3 − 3π

4
ζ(3), (13)

where ζ(x) is the Riemann zeta function. Some of these special cases can also
be found in [3, p. 531, 582, 585].

Remark 2.1. Some families of these type of integrals have been studied in
[2] and as pointed out in that work, these type of integrals have a wide range
potential applications in mathematical and physical problems.

In what follows, we present some inequalities involving the function H(m)(x).
We start with the following well-known definition.
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Definition 2.2. A function f : I → R is said to be logarithmically convex or
in short log-convex if ln f is convex on I. That is if

ln f(αx+ βy) ≤ α ln f(x) + β ln f(y),

or equivalently

f(αx+ βy) ≤ (f(x))α(f(y))β,

for each x, y ∈ I and α, β > 0 such that α + β = 1.

Theorem 2.3. Let m,n ∈ {2k : k ∈ N0}, a > 1, 1
a

+ 1
b

= 1 and m
a

+ n
b
∈ N0.

Then the inequality

H(m
a

+n
b

)
(x
a

+
y

b

)
≤
(
H(m)(x)

) 1
a
(
H(n)(y)

) 1
b , (14)

is satisfied for x, y ∈ (−1,∞).

Proof. The main tool of this proof is the Hölders inequality for integrals.
Notice that since x, y ∈ (−1,∞), a > 1 and 1

a
+ 1

b
= 1, then x

a
+ y

b
∈ (−1,∞).

Then by (4), we obtain

H(m
a

+n
b

)
(x
a

+
y

b

)
=

∫ π
2

0

(ln cos t)
m
a

+n
b cos

x
a

+ y
b t dt

=

∫ π
2

0

(ln cos t)
m
a cos

x
a t · (ln cos t)

n
b cos

y
b t dt

≤

(∫ π
2

0

(ln cos t)m cosx t dt

) 1
a
(∫ π

2

0

(ln cos t)n cosy t dt

) 1
b

=
(
H(m)(x)

) 1
a
(
H(n)(y)

) 1
b ,

which completes the proof.

Remark 2.4. If m = n in (14), then we obtain

H(m)
(x
a

+
y

b

)
≤
(
H(m)(x)

) 1
a
(
H(m)(y)

) 1
b , (15)

which is implies that the function H(m)(x) is log-convex on (−1,∞) if m ∈
{2k : k ∈ N0}.

Remark 2.5. If m = n and a = b = 2 in (14), then we obtain

H(m)

(
x+ y

2

)
≤
√
H(m)(x)H(m)(y). (16)
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Remark 2.6. If n = m+ 2, a = b = 2 and x = y in (14), then we obtain the
Turan-type inequality

H(m)(x)H(m+2)(x) ≥
(
H(m+1)(x)

)2
. (17)

Corollary 2.7. The function

h(x) =
H(m+1)(x)

H(m)(x)
, (18)

is increasing on x ∈ (−1,∞) if m ∈ {2k : k ∈ N0}.

Proof. Let m ∈ {2k : k ∈ N0}. Then direct differentiation yields

h′(x) =
H(m+2)(x)H(m)(x)−

(
H(m+1)(x)

)2

[H(m)(x)]2
≥ 0,

which follows easily from (17).

Theorem 2.8. Let m ∈ {2k : k ∈ N0}. Then the inequality(
H(m)(y)

H(m)(x)

)λ
≤ H(m)(λy)

H(m)(λx)
, (19)

holds if either λ ≥ 1 and 0 < x ≤ y or 0 < λ < 1 and −1 < x ≤ y < 0. It
reverses if either λ ≥ 1 and −1 < x ≤ y < 0 or 0 < λ < 1 and 0 < x ≤ y.

Proof. Let G be defined for m ∈ {2k : k ∈ N0}, λ > 0 and x ∈ (−1,∞) by

G(x) =
H(m)(λx)

[H(m)(x)]
λ
.

Then,
G′(x)

G(x)
= λ

[
H(m+1)(λx)

H(m)(λx)
− H(m+1)(x)

H(m)(x)

]
.

If either λ ≥ 1 and 0 < x ≤ y or 0 < λ < 1 and −1 < x ≤ y < 0, then we

obtain G′(x) ≥ 0 since H(m+1)(x)

H(m)(x)
is increasing. Thus G(x) is increasing. Hence

in either case, we have G(x) ≤ G(y) which gives (19). Likewise, if either λ ≥ 1
and −1 < x ≤ y < 0 or 0 < λ < 1 and 0 < x ≤ y, then we obtain G′(x) ≤ 0
which implies that G(x) is decresaing. Hence we have G(x) ≥ G(y) which
gives the reverse of (19).

Theorem 2.9. Let m,u ∈ {2k : k ∈ N0} and m ≥ u. Then the Turan-type
inequality

exp
{
H(m−u)(x)

}
· exp

{
H(m+u)(x)

}
≥
[
exp

{
H(m)(x)

}]2
, (20)

holds for x ∈ (−1,∞).
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Proof. Let m,u ∈ {2k : k ∈ N0} and m ≥ u. Then by using (4), we obtain the
following estimation.

H(m−u)(x)

2
+
H(m+u)(x)

2
−H(m)(x)

=
1

2

[∫ π
2

0

(ln cos t)m−u cosx t dt+

∫ π
2

0

(ln cos t)m+u cosx t dt

]

−
∫ π

2

0

(ln cos t)m cosx t dt

=
1

2

∫ π
2

0

[
1

(ln cos t)u
+ (ln cos t)u + 2

]
(ln cos t)m cosx t dt

=
1

2

∫ π
2

0

[1 + (ln cos t)u]2 (ln cos t)m−u cosx t dt

≥ 0.

Thus
H(m−u)(x)

2
+
H(m+u)(x)

2
≥ H(m)(x),

and by taking exponents, we obtain the result (20).

Theorem 2.10. Let m ∈ {2k : k ∈ N0}. Then the inequality

H(m)(x+ y) ≤ H(m)(x) +H(m)(y), (21)

holds for x, y ∈ [0,∞). In other words, H(m)(x) is subadditive on [0,∞) if
m ∈ {2k : k ∈ N0}.

Proof. Let a > 1, b > 1 and 1
a

+ 1
b

= 1. Then by the Hölder’s inequality, we
obtain

H(m)(x+ y) =

∫ π
2

0

(ln cos t)
m
a

+m
b cosx+y t dt

=

∫ π
2

0

(ln cos t)
m
a cosx t · (ln cos t)

m
b cosy t dt

≤

(∫ π
2

0

(ln cos t)m cosax t dt

) 1
a
(∫ π

2

0

(ln cos t)m cosby t dt

) 1
b

=
(
H(m)(ax)

) 1
a
(
H(m)(by)

) 1
b .

That is

H(m)(x+ y) ≤
(
H(m)(ax)

) 1
a
(
H(m)(by)

) 1
b . (22)



22 Kwara Nantomah

Then by the Young’s inequality:

u
1
av

1
b ≤ u

a
+
v

b
,

where u, v ≥ 0, a > 1, 1
a

+ 1
b

= 1, we obtain(
H(m)(ax)

) 1
a
(
H(m)(by)

) 1
b ≤ H(m)(ax)

a
+
H(m)(by)

b
. (23)

Furthermore, since a > 1, b > 1 and H(m)(x) is decreasing for m ∈ {2k : k ∈
N0}, we have

H(m)(ax)

a
+
H(m)(by)

b
≤ H(m)(x) +H(m)(y). (24)

Finally, by combining (22), (23) and (24), we obtain the result (21).

Remark 2.11. If x = y in (21), then we obtain

H(m)(2x) ≤ 2H(m)(x). (25)

By repeated applications of (21) and (25), we obtain

H(m)(nx) ≤ nH(m)(x), n ∈ N, (26)

which implies that H(m)(x) is N-subhomogeneous for m ∈ {2k : k ∈ N0}.
Remark 2.12. Note that H(0)(n) = In for n ∈ N. Then as a special case, by
letting m = 0, x = r ∈ N and y = s ∈ N in (21), we obtain

Ir+s ≤ Ir + Is,

which implies that the Wallis’ sequence In is subadditive.

Theorem 2.13. Let m ∈ {2k : k ∈ N0}.Then the inequality

H(m)(x)H(m)(y) ≤ CmH
(m)(x+ y), (27)

holds for x, y ∈ [0,∞), where Cm =
∫ π

2

0
(ln cos t)m dt.

Proof. Let T be defined for m ∈ {2k : k ∈ N0} by

T (x, y) =
H(m)(x)H(m)(y)

H(m)(x+ y)
, x, y ∈ [0,∞),

and let δ(x, y) = lnT (x, y). With no loss of generality, let y be fixed. Then,

δ′(x, y) =
H(m+1)(x)

H(m)(x)
− H(m+1)(x+ y)

H(m)(x+ y)
≤ 0,

since H(m+1)(x)

H(m)(x)
is increasing (see Corollary 2.7). Thus, δ(x, y) is decreasing and

consequently, T (x, y) is also decreasing. Then for x ≥ 0, we obtain

H(m)(x)H(m)(y)

H(m)(x+ y)
≤ H(m)(0) = Cm,

which gives the result (27).
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3 Open Problem

Is there an explicit expression for the function

Cm =

∫ π
2

0

(ln cos t)m dt, m ∈ N0,

in terms of other special functions?
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