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Abstract

The aim of this paper is to prove that the strings of 0 in the
(−β)-expansion of `β = −β

β+1 exhibit a lacunary bounded when β
is an algebraic number greater than 1. This result provides in a
naturel way a transcendence criteria with numeration system
in negative base..
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1 Introduction

There exist many ways to represent real numbers. Besides, expansions in inte-
ger negative base −b, where b > 2, seem to have been introduced by Grunwald
in [3], and rediscovered by several authors, see the historical comments given by
Knuth [5]. The choice of a negative base −b and of the alphabet {0, · · · , b−1}
is interesting, because it provides a signless representation for every number
(positive or negative). In this case it is easy to distinguish the sequences
representing a positive integer from the ones representing a negative integer:
denoting (x.)−b =

∑k
i=0 xi(−b)i for any x = xk · · ·x1x0 in {0, · · · , b− 1}∗ with

no leading 0’s, we have N = {(x.)−b | |x| is odd}.
Recently, Ito and Sadahiro [4] suggested to study positional systems with

no integer negative bases −β, where β > 1. They have provided a condition for
admissibility of digit strings as (−β)-expansions and shown some properties of
the dynamical system connected to (−β)- numeration. Representation of real
numbers in such a system is defined using the transformation T−β : [`β, rβ) 7−→
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[`β, rβ), where `β = − β
β+1

, rβ = `β + 1 = 1
β+1

. the transformatio T−β given by
the prescription

T−β(x) := −βx− [−βx− lβ].

Every real x ∈ Iβ := [`β, rβ) is a sum of the infinite series

x =
+∞∑
i=1

xi
(−β)i

, where xi = [−βT i−1−β (x)− lβ] for i = 1, 2, 3 . . . (1)

Directly from the definition of the transformation T−β we can derive that the
digits xi take values in the alphabet Aβ = {0, 1, · · · , [β]} for i = 1, 2, · · · . The
expression of x in the form (3) is called the (−β)-expansion of x. The number
x is thus represented by the infinite word d−β(x) := x1x2 · · · ∈ AN

β .
In [4] it is suggested to find the expansion of a number x /∈ [lβ, rβ) by dividing
it by a suitable power of (−β) so that y := (−β)−kx ∈ [lβ, rβ), finding the
expansion of y and multiplying it back by (−β)k. The expression for x provided
by such procedure, however, depends on chosen k, so the prescription must
be modified, in order to give a unique (−β)-expansion for every real x. The
advantage of this numeration system with negative base stems from the fact
that both positive and negative real numbers can be represented with non-
negative digits. Thereby, in [1] we give a property that allows us to know the
sign of a certain real number in R after his (−β)-expansion.

Lemma 1.1 Let β > 1 such that d−β(x) = a−la−l+1a−l+2 . . . a0.a1a2 . . . for
every real number x and s = infi≥−l{i; ai 6= 0}. Then sign(x) = sign(−1)s.

From the definition of the transformation T−β, Ito and Sadahiro has provided
a criteria to decide whether an infinite word AN belongs to the set of (−β)-
expansions. We give this criterion:

Proposition 1.2 An integer sequence (x1, x2, . . .) represents a (−β)-expansion
of some x ∈ Iβ if and only if T i−β(x) ∈ Iβ for all i ≥ 1.

To make the last Proposition more explicit, Ito and Sadahiro introduce in [4]
the ordering on the set of infinite words over the alphabet Aβ which would
correspond to the ordering of real numbers is the so-called alternate ordering:
We say that x1x2x3 . . . ≺alt y1y2y3 . . . if for the minimal index j such that
xj 6= yj it holds that xj(−1)j < yj(−1)j. In this notation, we can write for
arbitrary x, y ∈ Iβ that

x ≤ y ⇔ d−β(x) �alt d−β(y)

94
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In their paper, In order to describe the digit strings that are admissible as
(−β)-expansions, one defines the so-called a (−β) represantation of rβ denoted
d∗−β(rβ) by:

d∗−β(rβ) =

{
(0b1b2 · · · bq−1bq − 1)w if d−β(`β) = (b1b2 · · · bq)w and q odd,
d−β(rβ) = 0d−β(`β) otherwise.

(As usual, the notation aw stands for infinite repetition of the string a.)
They have shown that a digit string xkxk−1 · · · is admissible if and only if each
of its suffixes satisfies

∀ i ∈ N∗, d−β(`β) �alt (xixi+1xi+2 · · · ) ≺alt d∗−β(rβ).

In particular, in [8] Steiner proved that a sequence b1b2 · · · is the (−β)-expansions
of `β if and only if it satisfies the following condition:
i) b1b2 · · · �alt bibi+1bi+2 · · · .
ii) b1b2 · · · ≺alt u1u2 · · · = 100111001001001110011 · · · ,
where u1u2 · · · is the sequence starting with ϕn(1) for all n ≥ 0 with ϕ being
the morphism of words on the alphabet {0, 1} defined by ϕ(1) = 100, ϕ(0) = 1.
iii) b1b2 · · · /∈ {b1 · · · bk, b1 · · · bk−1(bk − 1)0}w \ {(b1 · · · bk)w} for all k ≥ 1,
with (b1 · · · bk)w ≺ u1u2 · · · .
iv) b1b2 · · · /∈ {b1 · · · bk0, b1 · · · bk−1(bk + 1)}w \ {(b1 · · · bk)w} for all k ≥ 1,
with (b1 · · · bk−1(bk + 1))w ≺ u1u2 · · · .

The (−β)-expansion of `β, d−β(`β) is important since it yields a lot of
information on the classiffication of algebraic numbers β > 1. In [7], Masakova,
Pelantova, Ito and Sadahiro have called these bases Ito-Sadahiro numbers and
they have proved that an Ito-Sadahiro number is an algebraic integer. Frougny
and Lai show in [2] that if β is an Ito-Sadahiro number, then β is a Pisot number
(an algebraic integer whose conjugates have modulus < 1). It is proved in [7, 2]
that an Ito-Sadahiro number is a Perron number (an algebraic integer whose
conjugates have modulus < [β]).

Now, we are interested if the sequence of (−β)-expansion of `β is infinite.
In this context, we give in this paper a new Theorem on the gaps (strings of
0’s) in d−β(`β) for algebraic numbers β > 1.

2 Main results

Theorem 2.1 Let β > 1 be an algebraic number with minimal polynomial

Pβ(x) = adx
d + ad−1x

d−1 + · · ·+ a0

and M(β) be its Mahler measure defined by

M(β) = |ad|
d−1∏
i=0

max{1, |βi|},
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where β = β0, β1, · · · , βd−1 are the complex conjugates of β.
Denote by d−β(`β) := 0.t1t2t3 · · · , the (−β)-expansion of `β. Assume that
d−β(`β) is infinite and gappy in the following sense: there exist two sequences
(mn)n≥1 and (sn)n≥0 such that

1 = s0 ≤ m1 < s1 ≤ m2 < s2 ≤ · · · ≤ mn < sn ≤ mn+1 < sn+1 ≤ · · ·

with (sn−mn) ≥ 2 , tmn 6= 0, tsn 6= 0 and ti = 0 if mn < i < sn for all n ≥ 1.
Then,

lim supn→+∞
sn
mn
≤ logM(β)+(d−1)Log|ad|

Logβ
.

Corollary 2.2 If β is a Pisot or Salem number and the (−β)-expansion of `β
satisfies the same conditions of Theorem 2.1, then

lim supn→+∞
sn
mn
≤ 1.

Before giving the proof of the theorem 2.1, we present the following lemmas

Lemma 2.3 (Classical theorem on symmetric polynomials)
Let Q ∈ Z[X] and P (y1, y2, . . . , yn) = Q(y1)Q(y2) . . . Q(yn). Then it exists a

polynomial T of n variables with coefficients in Z such as

P (y1, y2, . . . , yn) = T (σ1, σ2, . . . , σn)

where: 

σ1 =
n∑
i=1

yi

σ2 =
∑

1≤i<j≤n

yiyj

σ3 =
∑

1≤i<j<k≤n

yiyjyk

...
σn = y1y2 . . . yn

Moreover, we note that the total degree of T is less than or equal to the degree
of Q (as polynomial in y)

Lemma 2.4 Let β be an algebraic number with minimal polynomial Pβ(x) =
adx

d + ad−1x
d−1 + · · ·+ a0 where ai ∈ Z, for all 0 ≤ i ≤ d.

Let Q(x) = bnx
n + bn−1x

n−1 + · · · + b0 where bi ∈ Z, for all 0 ≤ i ≤ n, such
that Q(β) 6= 0.
Then, we have

|Q(β)| ≥ βn

(H(Q))d−1(n+ 1)d−1(M(β))n|ad|n(d−1)+d
,

where H(Q) is the height of Q defined by H(Q) = max0≤i≤n |bi|.
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Proof 2.5 Let βo = β, . . . , βd−1 the conjugates of β and Pβ(x) = adx
d +

ad−1x
d−1 + · · ·+ a0 where ai ∈ Z, for all 0 ≤ i ≤ d., the minimal polynomial

of β, then adβ
d =

∑d−1
i=0 −aiβi, therefore for all k ∈ N∗;

akdβ
d+k−1 =

d−1∑
i=0

αk,iβ
i, αk,i ∈ Z.

This gives that for all s′ ≥ s:

as
′

d β
s =

d−1∑
i=0

ck,iβ
i, ck,i ∈ Z.

So, andQ(β) =
∑d−1

i=0 θk,iβ
i, θk,i ∈ Z.

Therefore:

andQ(βj) =
d−1∑
i=0

ek,iβ
i
j, ek,i ∈ Z, ∀ 0 ≤ j ≤ d− 1.

Hence, we obtain andd

d−1∏
j=0

Q(βj) =
d−1∏
j=0

(
d−1∑
i=0

ek,iβ
i
j). By Lemma 2.3, it exists a

polynomial T of d variables with coefficients in Z, such that

d−1∏
j=0

(
d−1∑
i=0

ek,iβ
i
j) = T (σ1, σ2, . . . , σd),

where
σj =

∑
0≤k1<k2<...<kj≤d−1

βk1βk2 . . . βkj , 1 ≤ j ≤ d,

and the total degree of T is lower than or equal to the degree of d. Which gives

that adda
nd
d

d−1∏
j=0

Q(βj) ∈ Z∗.

Consequently, |
d−1∏
j=0

Q(βj) |≥
1

|ad|nd+d
.

| Q(βj) |< H(Q)(n+ 1) sup(|βj|n, 1), so

|
d−1∏
j=1

Q(βj) | ≤ H(Q)d−1
d−1∏
j=1

(n+ 1) sup(|βj|n, 1),

≤ (n+ 1)d−1H(Q)d−1(M(β))n

|ad|nβn
.



98 S. Dammak

Hence, we obtain

| Q(β) |≥ 1

|
d−1∏
j=1

Q(βj) | |ad|nd+d
≥ βn

(H(Q))d−1(n+ 1)d−1(M(β))n|ad|n(d−1)+d
.

Proof of Theorem 2.1 : By contradiction, we assume that

lim sup
n→+∞

sn
mn

>
logM(β) + (d− 1)Log|ad|

Logβ
. (2)

Set Sn(z) = (−1)mn+1zmn+1+(−1)mnt1z
mn+

∑mn−1
i=1 (−1)mn−i(ti+1−ti)zmn−i−

tmn
a polynomial of integer coefficients of degree mn + 1.
We have `β =

∑∞
i=1

ti
(−β)i i.e

−β
β + 1

=
t1

(−β)
+ · · ·+ tmn

(−β)mn
+

tsn
(−β)sn

+ · · · .

Multiplying the two sides by (−β)mn , we obtain

(−β)mn+1 = (β + 1)[t1(−β)mn−1 + · · ·+ tmn ] + (β + 1)[
tsn

(−β)sn−mn
+ · · · ],

which implies that

(−β)mn+1 − (β + 1)[t1(−β)mn−1 + · · ·+ tmn ] = (β + 1)
+∞∑
i=sn

ti
(−β)i−mn

,

thereby

(−β)mn+1+t1(−β)mn+(t2−t1)(−β)mn−1+· · ·+(tmn−tmn−1)(−β)−tmn = (β+1)
+∞∑
i=sn

ti
(−β)i−mn

.

Hence

|Sn(β)| = |(β + 1)
+∞∑
i=sn

ti
(−β)i−mn

|,

= (β + 1)(
tsn

(−β)sn−mn
+ · · · )|,

≤ 1

βsn−mn
(β + 1)

β[β]

β − 1
. (3)

Recall that the minimal polynomial of β = β0 is

Pβ(x) =
d∑
i=0

aix
i = ad

d−1∏
i=0

(x− βi)
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with β1, · · · , βd−1 are their conjugates and Sn(z) ∈ Z[X]. By lemma 2.4, we
have

|Sn(β)| ≥ βmn+1

[β]d−1(mn + 2)d−1(M(β))mn+1|ad|(mn+1)(d−1)+d . (4)

Combining 3 and 4 we obtain:

βmn+1

[β]d−1(mn + 2)d−1(M(β))mn+1|ad|(mn+1)(d−1)+d ≤
1

βsn−mn
(β + 1)

β[β]

β − 1
,

βsn

|ad|d[β]d−1(mn + 2)d−1(|ad|d−1M(β))mn+1
≤ (β + 1)

(β − 1)
[β],

1

|ad|2d−1[β]d−1(mn + 2)d−1M(β)
(

β
sn
mn

|ad|d−1M(β)
)mn ≤ [β]

β + 1

β − 1
. (5)

Denote for n ≥ 1;

un =:
1

|ad|2d−1[β]d−1(mn + 2)d−1M(β)
(

β
sn
mn

|ad|d−1M(β)
)mn .

Hence, we get that the sequence un is bounded. So by the inequality 2 there
exists a sequence of integers (ni) which tends to infinity and an integer i0 such
that

sni
mni

> log(|ad|d−1M(β))
Logβ

for all i ≥ i0.

Thereby returning that for i ≥ i0;

β
sni
mni

|ad|d−1M(β)
>
β
log(|ad|

d−1M(β))

Logβ

|ad|d−1M(β)
= 1.

This implies that the subsequence uni tends exponentially to infinity when i
tends to infinity, which contradicts the bounded of sequence un.

Corollary 2.6 Let β > 1 be a real number such that the (−β)-expansion of
`β is the form

d−β(`β) := 0.t1t2t3 · · · , with ti ∈ Aβ := {0; 1; 2; · · · ; [β]},

Assume that d−β(`β) is infinite and gappy in the following sense: There exist
two sequences (mn)n≥1 and (sn)n≥0 such that

1 = s0 ≤ m1 < s1 ≤ m2 < s2 ≤ · · · ≤ mn < sn ≤ mn+1 < sn+1 ≤ · · ·

with (sn−mn) ≥ 2 , tmn 6= 0, tsn 6= 0 and ti = 0 if mn < i < sn for all n ≥ 1.
If lim supn→+∞

sn
mn

= +∞, then β is a transcendental number.
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3 Application

Thank to i), ii), iii), and iv) there exist β > 1 such that the (−β)-expansion
of `β is in the form:

d−β(`β) = 1 0︸︷︷︸
λ1

1 000 · · ·︸ ︷︷ ︸
λ2

1 000 · · ·︸ ︷︷ ︸
λ3

1 000 · · ·︸ ︷︷ ︸
λ4

1 · · · ,

with (λn)n≥1 = nn
2
. A simple computation prove that for this example we

have:
mn = λ1 + λ2 + · · ·+ λn + n+ 1

and sn = mn + λn+1 + 1,

then lim supn→+∞
sn
mn

= +∞.
According to corollary 2.6, β is necessarily a transcendental number.

4 Open Problem

The main result is it still true if we replace the string of ”0” by a string of any
integer a > 0.
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