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Abstract

The aim of this paper is to prove that the strings of 0 in the
(—p)-expansion of (g = 5;451 exhibit a lacunary bounded when [
is an algebraic number greater than 1. This result provides in a
naturel way a transcendence criteria with numeration system
in negative base..
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1 Introduction

There exist many ways to represent real numbers. Besides, expansions in inte-
ger negative base —b, where b > 2, seem to have been introduced by Grunwald
in [3], and rediscovered by several authors, see the historical comments given by
Knuth [5]. The choice of a negative base —b and of the alphabet {0,--- ,0—1}
is interesting, because it provides a signless representation for every number
(positive or negative). In this case it is easy to distinguish the sequences
representing a positive integer from the ones representing a negative integer:
denoting (x.)_p = Zf:o z;(=b)" for any = = xy, - - - x130 in {0,--- ,b— 1}* with
no leading 0’s, we have N = {(z.)_; | |z| is odd}.

Recently, Ito and Sadahiro [4] suggested to study positional systems with
no integer negative bases — (3, where 5 > 1. They have provided a condition for
admissibility of digit strings as (—()-expansions and shown some properties of
the dynamical system connected to (—/)- numeration. Representation of real
numbers in such a system is defined using the transformation 7" g : [(g,75) —>
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[lg,75), where (g = —%, rg=4Llg+1= ﬁ the transformatio 7_z given by
the prescription

T g(x) == —fx — [Pz — lg].

Every real © € I3 := [(3,75) is a sum of the infinite series
00 T
x = — where x; = [-8T ! (x) — lg] for i = 1,2,3. .. 1
2 oy (=BT (@) ) (1)

Directly from the definition of the transformation 7_g we can derive that the
digits z; take values in the alphabet Az = {0,1,--- ,[8]} for i =1,2,--- . The
expression of z in the form (3) is called the (—f3)-expansion of . The number
x is thus represented by the infinite word d_g(z) := z125--- € Aj.

In [4] it is suggested to find the expansion of a number x ¢ [l,73) by dividing
it by a suitable power of (—f) so that y := (—8)"*x € [l3,75), finding the
expansion of y and multiplying it back by (—#3)*. The expression for x provided
by such procedure, however, depends on chosen k, so the prescription must
be modified, in order to give a unique (—[)-expansion for every real x. The
advantage of this numeration system with negative base stems from the fact
that both positive and negative real numbers can be represented with non-
negative digits. Thereby, in [1] we give a property that allows us to know the
sign of a certain real number in R after his (—/)-expansion.

Lemma 1.1 Let § > 1 such that d_g(x) = a_ja_j410_142...ap.a1a2 ... for

every real number x and s = inf;>_{i;a;, # 0}. Then sign(z) = sign(—1)*.

From the definition of the transformation 7", Ito and Sadahiro has provided
a criteria to decide whether an infinite word AN belongs to the set of (—f3)-
expansions. We give this criterion:

Proposition 1.2 An integer sequence (x1, xo, . ..) represents a (—3)-expansion
of some x € Ig if and only z'fTiﬂ(a:) € Ig for alli > 1.

To make the last Proposition more explicit, Ito and Sadahiro introduce in [4]
the ordering on the set of infinite words over the alphabet Az which would
correspond to the ordering of real numbers is the so-called alternate ordering:
We say that xixox3... <u¢ Y1y2y3 ... if for the minimal index j such that
x; # y; it holds that x;(—1)7 < y;(—1)7. In this notation, we can write for
arbitrary z,y € Iz that

r<y & dg(x)2uds(y)
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In their paper, In order to describe the digit strings that are admissible as
(—p)-expansions, one defines the so-called a (—/) represantation of r3 denoted

d*—ﬁ<r5) by:

d* (’I" ) _ (Oblbg ce bq—lbq - 1)w Zf d_g(gg) = (blbg ce bq)w and q Odd,
—p\'B d_g(rg) = 0d_z({g) otherwise.

(As usual, the notation a* stands for infinite repetition of the string a.)
They have shown that a digit string xpxy_1 - - - is admissible if and only if each
of its suffixes satisfies

Vie N, dg(ls) Ran (TiTis1Tiva ) <ar d 5(rs)-

In particular, in [8] Steiner proved that a sequence byb, - - - is the (—3)-expansions
of {5 if and only if it satisfies the following condition:

i) biby -+ R bibig1bigg -+

1) byby - -+ <4 urug - -+ = 100111001001001110011 - - - |

where ujus - - - is the sequence starting with ¢"(1) for all n > 0 with ¢ being
the morphism of words on the alphabet {0, 1} defined by (1) = 100, ¢(0) = 1.
ZZZ) blbg cee ¢ {bl cee bk, b1 cee bk—l(bk - 1)0}w \ {(bl tee bk)w} for all k 2 ].,

with (bl cee bk)w < ULU ** - .

) bbby & {by -+ b0, by -bp_1(bp + 1)} \ {(by---bp)*} for all k > 1,

with (bl R bk—l(bk + 1))w < UtUg - - .

The (—/)-expansion of ¢g, d_g(¢g) is important since it yields a lot of
information on the classiffication of algebraic numbers 5 > 1. In [7], Masakova,
Pelantova, Ito and Sadahiro have called these bases Ito-Sadahiro numbers and
they have proved that an Ito-Sadahiro number is an algebraic integer. Frougny
and Lai show in [2] that if 3 is an [to-Sadahiro number, then £ is a Pisot number
(an algebraic integer whose conjugates have modulus < 1). It is proved in [7, 2]
that an Ito-Sadahiro number is a Perron number (an algebraic integer whose
conjugates have modulus < [f]).

Now, we are interested if the sequence of (—f3)-expansion of ¢4 is infinite.
In this context, we give in this paper a new Theorem on the gaps (strings of
0’s) in d_g(¢s) for algebraic numbers > 1.

2 Main results

Theorem 2.1 Let f > 1 be an algebraic number with minimal polynomial
Pﬁ(x) = (ldl’d + ad_lxdfl + -+ ag
and M () be its Mahler measure defined by

d—1
M(B) = lagl [ maa{L, 18},
=0
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where B = By, b1, -+, Ba_1 are the complex conjugates of 3.

Denote by d_g(ls) = 0.t1tats---, the (—f)-expansion of lg. Assume that
d_g(lg) is infinite and gappy in the following sense: there exist two sequences
(Min)n>1 and (Sp)n>0 such that

l=s50<m; <s51<ma <52 < - <My, <8 <My < S <o

with (sp,—my) > 2, ty, #0, ts, #0 andt; =0 if m, <i <s, foralln > 1.
Then,

: s logM (B)+(d—1) Log|ad]
lim sup,, o 7= < Togh .

Corollary 2.2 If 8 is a Pisot or Salem number and the (—f3)-expansion of {3
satisfies the same conditions of Theorem 2.1, then
limsup, 4 7= < 1.

Before giving the proof of the theorem 2.1, we present the following lemmas

Lemma 2.3 (Classical theorem on symmetric polynomials)

Let Q € Z|X] and P(y1,y2, -, Yn) = Q(y1)Q(y2) ... Q(yn). Then it exists a
polynomial T of n variables with coefficients in Z such as

P(y17y27"'7yn) :T(017027"'7an)

where: )

01 = Zyi
=1
02 = Z YilY;j

1<i<j<n

O3 = Z YiYiYk

1<i<j<k<n

L On = Y1Y2 ... Yn

Moreover, we note that the total degree of T is less than or equal to the degree
of @ (as polynomial in y)

Lemma 2.4 Let § be an algebraic number with minimal polynomial Ps(x) =
agx® 4+ ag_12¥ '+ -+ ag where a; €Z, for all 0 < i <d.
Let Q(z) = bpa™ + by_12™t + -+« + by where b; € Z, for all 0 < i < n, such

that Q(B) # 0.
Then, we have
Bn

QN = @)+ e e
where H(Q) is the height of Q defined by H(Q) = maxo<i<n |bil.
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Proof 2.5 Let 3, = B,...,0a_1 the conjugates of B and Pz(x) = aqz? +
g1+ -+ ag where a; € Z, for all 0 <i < d., the minimal polynomial
of B, then agf? = Z?:_Ol —a; 3%, therefore for all k € N*;

d—1
affTH T = Zak,zﬂi, Qi € L.
i=0
This gives that for all s' > s:
d—1
ag F° = ch,zﬂz, Cri € L.
i=0
d— .
SO; ag (5) = Zzzol ek,z‘ﬁl» ek,i € Z.

Therefore:

d-1
agQ(B;) = Zelmﬂ;, eri €4, VYV 0<j5j<d-1
i=0

d—1 d-1

d—1 -
Hence, we obtain afjdHQ(ﬁj) = (Z ek,iﬁ’;). By Lemma 2.3, it exists a
=0 j=0 i=0

polynomial T of d variables with coefficients in 7, such that

d—1 d—1
( €k 15;) = T(017U27 aad)v
7=0 =0
where
oj = > BriBrs - Prys 1< <,

0<ky <ko<...<k;j<d-1

and the total degree of T is lower than or equal to the degree of d. Which gives

d—1
that alan? H Q(B)) e Z*.
=0

d-1

Consequently, | HOQ(BJ') > W.

| Q(3) 1< HQ)(n+ 1)sup(|5,1". 1), so
d-1 d-1
JIe®) | < H@* [](n+1)sup(B]", 1),
=1 =1

(n+ ) HQ (M(B)"

— |ad|n6n
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Hence, we obtain

1 s
QB = = o @)Y o+ D (M B a0
[TT Q) [Haa™

Proof of Theorem 2.1 : By contradiction, we assume that

M ~1)L
lim sup 57 > 109 (8) + (d —1)Log|aa|
n—+oo My LOgﬁ

Set Sy (2) = (= 1) et (1) ety 2 YT (=) (b )2
tm,,

a polynomial of integer coefficients of degree m,, + 1.

We have (g =7, (f—;})l i.e

__6 _t_1+...+ b L
B+1 (=B) (=p)mn (=B)

Multiplying the two sides by (—3)™", we obtain

(2)

(=B)™* = (B+ 1)t (=B)" "+ + b, ) + (B + 1)[%—” +-],

(=p)sm=mn
which implies that
+o0 )
(=) = (B Dl (8™ 4 ] = (3D Y e
thereby
+0c0 ]
(=B)™ 1 (=)™ +(ta=t2) (= B)™ A (b —tm, 1) (= B) —tm, = (B+1) Y ﬁ
Hence
+o0 ti
152 (B)] = [(6+1) Z W‘?
= (B4 Dz )l
18]
< Gonn B+ l)ﬁ' (3)

Recall that the minimal polynomial of 5 = [ is

d

d-1
Ps(z) = Z a;r’ = ag H($ —Bi)

1=0
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with £y, -+, B4-1 are their conjugates and S,(z) € Z[X]. By lemma 2.4, we
have

/an+1
1S (B)| > (B9 (1, + 2)4-L(M ()™ + L ag| D@D+ (4)
Combining 3 and 4 we obtain:
gt 1 8]
7 + 2 M@ agsi@nwd = B F U
g < B+l
|aa|[B)4 (M, + 2)8 (|ag|= T M (B)) et T (B—1)7
1 Bun B+1
P e s R T T A e M
Denote for n > 1;
U, L prm )me

= TP (i, + 2) (D) g B (F)

Hence, we get that the sequence u, is bounded. So by the inequality 2 there
exists a sequence of integers (n;) which tends to infinity and an integer iy such
that

SniS log(laq|® "' M(B))

o Toa? for all 7 > 1.

Thereby returning that for ¢ > ig;

BLM 5w
mn, og

> =1.
ag|4=tM(B) = |aa|*"tM(B)

This implies that the subsequence u,, tends exponentially to infinity when 4
tends to infinity, which contradicts the bounded of sequence w,,.

Corollary 2.6 Let 5 > 1 be a real number such that the (—[)-expansion of
lg is the form

d_g(lg) == 0.tytats---, with t; € Ag:={0;1;2;---;[F]},

Assume that d_g(lg) is infinite and gappy in the following sense: There exist
two sequences (My)p>1 and (Sp)n>o0 Such that

L=s5o<m; <s1<mg <8<+ <My <8 SMygr < Spyp <o

with (s, —my) > 2, by, #0, ts, #0 andt; =0 if m, <i <s, foralln > 1.
If limsup,,_, o 2= = +00, then [ is a transcendental number.
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3 Application

Thank to 7), i), iii), and iv) there exist § > 1 such that the (—f)-expansion
of {3 is in the form:

d_s(ls) =1 S 100(3-..1002-.~100(A)~--1~-,
1 2 3 4

with (A)p>1 = n". A simple computation prove that for this example we
have:
My =AM +X+-+ A\, +n+1

and s, = my, + A1 + 1,

then limsup,, ,, 2> = +o0.
According to corollary 2.6, 3 is necessarily a transcendental number.

4 Open Problem

The main result is it still true if we replace the string of 70" by a string of any
integer a > 0.
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