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Abstract

In this paper, we introduce a p-generalization of the Nielsen’s
β-function. We further study among other things, some prop-
erties such as convexity, monotonicity and inequalities of the
new function. In the end, we pose an open problem.
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1 Introduction

The Nielsen’s β-function may be defined by any of the following equivalent
forms (see [2], [3], [8], [11]).

β(x) =

∫ 1

0

tx−1

1 + t
dt, x > 0, (1)

=

∫ ∞
0

e−xt

1 + e−t
dt, x > 0, (2)

=
∞∑
k=0

(−1)k

k + x
, x > 0, (3)

=
1

2

{
ψ

(
x+ 1

2

)
− ψ

(x
2

)}
, x > 0, (4)
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where ψ(x) = d
dx

ln Γ(x) is the digamma or psi function and Γ(x) is the Euler’s
Gamma function. It is known to satisfy the properties:

β(x+ 1) =
1

x
− β(x), (5)

β(x) + β(1− x) =
π

sin πx
. (6)

Lately, this special function has been studied in diverse ways. For instance, in
[8], the author investigated some properties and inequalities of the function.
Also, in [9], the function was applied to study some monotonicity and convex-
ity properties and some inequalities involving a generalized form of the Wallis’
cosine formula. Then in [10], the author proved some monotonicity and con-
vexity properties of the function. In this paper, we continue the investigation
by establishing a p-generalization of this special function. In the meantime,
we recall the following definitions concerning the p-analogue of the Gamma
function. We shall use the notations N = {1, 2, 3, 4, . . . } and N0 = N ∪ {0}.

The p-analogue (also known as p-extension or p-deformation) of the Gamma
function is defined for p ∈ N and x > 0 as [1], [12]

Γp(x) =
p!px

x(x+ 1) . . . (x+ p)
=

px

x(1 + x
1
) . . . (1 + x

p
)

(7)

=

∫ p

0

(
1− t

p

)p
tx−1 dt (8)

where limp→∞ Γp(x) = Γ(x). It satisfies the identities [5]

Γp(x+ 1) =
px

x+ p+ 1
Γp(x),

Γp(1) =
p

p+ 1
.

The p-analogue of the digamma functions is defined for x > 0 as [6]

ψp(x) =
d

dx
ln Γp(x) = ln p−

p∑
n=0

1

n+ x
, (9)

= ln p−
∫ ∞

0

1− e−(p+1)t

1− e−t
e−xt dt, (10)

and satisfies the relation [5]

ψp(x+ 1) =
1

x
− 1

x+ p+ 1
+ ψp(x). (11)

Also, it is well known in the literature that the integral

m!

xm+1
=

∫ ∞
0

tme−xt dt (12)

holds for x > 0 and m ∈ N0.
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2 A p-Generalization of Nielsen’s β-function

In this section, we introduce a p-generalization of the Nielsen’s β-function and
further study some of its properties.

Definition 2.1. The p-generalization of the Nielsen’s β-function is defined for
p ∈ N as

βp(x) =
1

2

{
ψp

(
x+ 1

2

)
− ψp

(x
2

)}
, x > 0, (13)

=

p∑
n=0

(
1

2n+ x
− 1

2n+ x+ 1

)
x > 0, (14)

=

∫ ∞
0

1− e−2(p+1)t

1 + e−t
e−xt dt, x > 0, (15)

=

∫ 1

0

1− t2(p+1)

1 + t
tx−1 dt, x > 0, (16)

where βp(x)→ β(x) as p→∞.

Remark 2.2. The relations (14) and (15) are respectively derived from (9)
and (10), and by a change of variable, (16) is obtained from (15).

Proposition 2.3. The function βp(x) satifies the functional equation

βp(x+ 1) =
1

x
− 1

x+ 2(p+ 1)
− βp(x). (17)

Proof. By using representation (16), we obtain

βp(x+ 1) + βp(x) =

∫ 1

0

1− t2(p+1)

1 + t
tx dt+

∫ 1

0

1− t2(p+1)

1 + t
tx−1 dt

=

∫ 1

0

1− t2(p+1)

1 + t
tx
(
t+ 1

t

)
dt

=

∫ 1

0

(1− t2(p+1))tx−1 dt

=
1

x
− 1

x+ 2(p+ 1)
,

which completes the proof.

As an immediate consequence of (17), we obtain the upper bound

βp(x) ≤ 1

x
− 1

x+ 2(p+ 1)
. (18)
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Also, successive applications of (17) yields the generalized form

βp(x+n) =
n−1∑
s=0

(−1)s+n+1

x+ s
+

n−1∑
s=0

(−1)s+n

x+ s+ 2(p+ 1)
+ (−1)nβp(x), n ∈ N. (19)

Also, successive differentiations of (13), (15), (16) and (17) yields respectively

β(n)
p (x) =

1

2n+1

{
ψ(n)
p

(
x+ 1

2

)
− ψ(n)

p

(x
2

)}
, (20)

= (−1)n
∫ ∞

0

tn − tne−2(p+1)t

1 + e−t
e−xt dt, (21)

=

∫ 1

0

(ln t)n − (ln t)nt2(p+1)

1 + t
tx−1 dt, (22)

β(n)
p (x+ 1) =

(−1)nn!

xn+1
− (−1)nn!

(x+ 2(p+ 1))n+1
− β(n)

p (x), (23)

where n ∈ N0 and β
(n)
p (x)→ β(n)(x) as p→∞.

Remark 2.4. It follows easily from (20)-(22) that:

(a) βp(x) is positive and decreasing,

(b) β
(n)
p (x) is positive and decreasing if n ∈ N0 is even,

(c) β
(n)
p (x) is negative and increasing if n ∈ N0 is odd.

Theorem 2.5. The function βp(x) satisfies the inequality

βp

(x
u

+
y

v

)
≤ [βp(x)]

1
u [βp(y)]

1
v , x, y ∈ (0,∞), (24)

where u > 1, v > 1 and 1
u

+ 1
v

= 1. Put in another way, the function βp(x) is
logarithmically convex on (0,∞).

Proof. Let u > 1, v > 1 and 1
u

+ 1
v

= 1 and x, y ∈ (0,∞). Then Hölder’s
inequality implies

βp

(x
u

+
y

v

)
=

∫ 1

0

1− t2(p+1)

1 + t
t
x
u

+ y
v
−1 dt

=

∫ 1

0

(
1− t2(p+1)

1 + t
tx−1

) 1
u
(

1− t2(p+1)

1 + t
ty−1

) 1
v

dt

≤
(∫ 1

0

1− t2(p+1)

1 + t
tx−1 dt

) 1
u
(∫ 1

0

1− t2(p+1)

1 + t
ty−1 dt

) 1
v

= [βp(x)]
1
u [βp(y)]

1
v ,

which gives the desired result.
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Remark 2.6. As a by-product of Theorem 2.5, we obtain immediately the
following results.

(a) The inequality βp(x)β′′p (x) ≥
(
β′p(x)

)2
holds for x ∈ (0,∞).

(b) The function
β′
p(x)

βp(x)
is increasing on (0,∞).

Corollary 2.7. The inequalities

[βp(x+ y)]2 < βp(x)βp(y), (25)

βp(x+ y) < βp(x) + βp(y), (26)

hold for x, y ∈ (0,∞).

Proof. Let u = v = 2 in Theorem 2.5. Then by the decreasing property of
βp(x), it follows easily that

βp(x+ y) < βp

(
x+ y

2

)
≤
√
βp(x)βp(y), (27)

which gives (25). Next, by (27) and the basic AM-GM inequality, we obtain

βp(x+ y) <
√
βp(x)βp(y) ≤ βp(x)

2
+
βp(y)

2
≤ βp(x) + βp(y),

which gives (26).

Corollary 2.8. The inequality

1 <
βp(z)

βp(z + 1)
<
βp(z − 1)

βp(z)
(28)

holds for z > 1.

Proof. Let z > 1. Then the left-hand side of (28) follows directly from the
decreasing property of βp(x). Next, by letting x = z − 1 and y = z + 1 in
right-hand side of (27), we obtain

β2
p(z) < βp(z − 1)βp(z + 1), (29)

which when rearranged, gives the right-hand side of (28). Alternatively, we

could proceed as follows. Let f(x) = βp(x)

βp(x+1)
for x > 0. Then

f ′(x) = f(x)

[
β′p(x)

βp(x)
−
β′p(x+ 1)

βp(x+ 1)

]
< 0,

which implies that f(x) is decreasing. Hence f(z) < f(z − 1) which also gives
the right-hand side of (28).
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Theorem 2.9. The function

φ(x) = uxβp(x), u > 0, (30)

is convex on (0,∞).

Proof. Let a > 1, b > 1, 1
a

+ 1
b

= 1 and x, y ∈ (0,∞). Then the log-convexity
of βp(x) implies

φ
(x
a

+
y

b

)
= u

x
a

+ y
b βp

(x
a

+
y

b

)
≤ [uxβp(x)]

1
a [uyβp(y)]

1
b ,

and by the classical Young’s inequality, we obtain

[uxβp(x)]
1
a [uyβp(y)]

1
b ≤ uxβp(x)

a
+
uyβp(y)

b
=
φ(x)

a
+
φ(y)

b
.

Hence, φ(x) is convex on (0,∞).

Theorem 2.10. The inequality

exp

{
βp

(
x+

1

2

)}
≤

Γp
(
x
2

+ 1
)

Γp
(
x
2

)
Γ2
p

(
x
2

+ 1
2

) ≤ exp

{
1

2x
− 1

2x+ 4(p+ 1)

}
(31)

holds for x > 0.

Proof. We make use of the Hermite-Hadamard’s inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(s) ds ≤ f(a) + f(b)

2
, (32)

for a convex function f : (a, b) ⊂ R → R. Since every logarithmically convex
function is also convex, it follows that βp(x) is convex. Now, letting f(s) =
βp(s) = 1

2

{
ψp
(
s+1

2

)
− ψp

(
s
2

)}
, a = x > 0 and b = x+ 1 in (32) gives

βp

(
x+

1

2

)
≤
∣∣∣∣ln Γp

(
x

2
+

1

2

)
− ln Γp

(x
2

)∣∣∣∣x+1

x

≤ βp(x+ 1) + βp(x)

2
,

which by (17) implies

βp

(
x+

1

2

)
≤ ln

Γp
(
x
2

+ 1
)

Γp
(
x
2

)
Γ2
p

(
x
2

+ 1
2

) ≤ 1

2

(
1

x
− 1

x+ 2(p+ 1)

)
.

Then by exponentiation, we obtain the required result (31).
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Remark 2.11. The function
Γp(x

2
+1)Γp(x

2 )
Γp(x

2
+ 1

2)
is a special case of

Tp(x, y) =
Γp(x)Γp(y)

Γ2
p(
x+y

2
)
, x, y > 0,

which is a p-analogue of Gurland’s ratio [4] for the Gamma function. For
more information concerning the Gurland’s ratio, one may refer to [7] and the
related references therein.

Lemma 2.12. Let f(t) and g(t) be any two functions with convolution f ∗g =∫ t
0
f(s)g(t− s) ds. Then the Laplace transform of the convolution is given as

L{f ∗ g} = L{f}L {g} .

That is∫ ∞
0

[∫ t

0

f(s)g(t− s) ds
]
e−xt dt =

∫ ∞
0

f(t)e−xt dt

∫ ∞
0

g(t)e−xt dt. (33)

The above lemma is well-known in the literature as the the convolution
theorem for Laplace transforms. We shall rely on it in proving some of the
results that follow.

Theorem 2.13. The function Q(x) = xβp(x) is completely monotonic on
(0,∞).

Proof. Recall that a function f : (0,∞) → R is said to be completely mono-
tonic on (0,∞) if f has derivatives of all order and (−1)nf (n)(x) ≥ 0 for all
x ∈ (0,∞) and n ∈ N. By repeated differentiation, we obtain

Q(n)(x) = nβ(n−1)
p (x) + xβ(n)

p (x). (34)

Then by (12), (15) and (33), we obtain

(−1)nQ(n)(x)

x
= (−1)n

[n
x
β(n−1)
p (x) + β(n)

p (x)
]

= −n
∫ ∞

0

e−xt dt

∫ ∞
0

tn−1(1− e−2(p+1)t)

1 + e−t
e−xt dt

+

∫ ∞
0

tn(1− e−2(p+1)t)

1 + e−t
e−xt dt

= −n
∫ ∞

0

[∫ t

0

sn−1(1− e−2(p+1)s)

1 + e−s
ds

]
e−xt dt

+

∫ ∞
0

tn(1− e−2(p+1)t)

1 + e−t
e−xt dt

=

∫ ∞
0

W (t)e−xt dt,
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where

W (t) = −n
∫ t

0

sn−1(1− e−2(p+1)s)

1 + e−s
ds+

tn(1− e−2(p+1)t)

1 + e−t
.

Then W (0) = limt→0W (t) = 0. In addition,

W ′(t) = 2(p+ 1)
tne−2(p+1)t

1 + e−t
+ tne−t

1− e−2(p+1)t

(1 + e−t)2
> 0,

which implies that W (t) increasing. Hence for t > 0, we have W (t) > W (0) =
0. Therefore,

(−1)nQ(n)(x) ≥ 0 (35)

which concludes the proof.

Remark 2.14. Theorem 2.13 implies that Q(x) = xβp(x) is decreasing and
convex. These further imply that

βp(x) + xβ′p(x) < 0 (36)

and
2β′p(x) + xβ′′p (x) > 0 (37)

respectively.

Corollary 2.15. The function H(x) = xβ′p(x) is increasing and concave on
(0,∞).

Proof. By (34), (35) and (37), we obtain

H ′(x) = β′p(x) + xβ′′p (x) > 2β′p(x) + xβ′′p (x) > 0,

H ′′(x) = 2β′′p (x) + xβ′′′p (x) < 3β′′p (x) + xβ′′′p (x) < 0,

which conclude the proof.

Theorem 2.16. The inequality

βp(xy) ≤ βp(x) + βp(y), (38)

holds for x > 0 and y ≥ 1.

Proof. Let φ(x, y) = βp(xy)− βp(x)− βp(y) for x > 0 and y ≥ 1. By fixing y,
we obtain

∂

∂x
φ(x, y) = yβ′p(xy)− β′p(x)

=
1

x

[
xyβ′p(xy)− xβ′p(x)

]
≥ 0,
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since xβ′p(x) is increasing. Hence, φ(x, y) is increasing. Then for 0 < x < ∞,
we obtain

φ(x, y) ≤ lim
x→∞

φ(x, y) = −βp(y) < 0,

which gives the result (38).

Remark 2.17. Note that
∣∣∣β(n)
p (x)

∣∣∣ = (−1)nβ
(n)
p (x) for all n ∈ N0. In respect

of this, the recurrence relation (23) yields∣∣β(n)
p (x+ 1)

∣∣ =
n!

xn+1
− n!

(x+ 2(p+ 1))n+1
−
∣∣β(n)
p (x)

∣∣ . (39)

It is also worth noting that, if F (x) =
∣∣∣β(n)
p (x)

∣∣∣, then F ′(x) = −
∣∣∣β(n+1)
p (x)

∣∣∣.
This implies that the

∣∣∣β(n)
p (x)

∣∣∣ is decreasing for all n ∈ N0. Furthermore, it

follows readily from (39) that∣∣β(n)
p (x)

∣∣ ≤ n!

xn+1
− n!

(x+ 2(p+ 1))n+1
. (40)

This is a generalization of (18).

Theorem 2.18. Let ∆n be defined for x > 0 and n ∈ N0 as

∆n(x) =
xn+1

n!

∣∣β(n)
p (x)

∣∣ . (41)

Then,

(a) limx→0 ∆n(x) = 1 and limx→0 ∆′n(x) = 0 .

(b) ∆n(x) is decreasing.

Proof. (a) By virtue of (39), we obtain

lim
x→0

∆n(x) = lim
x→0

{
1−

(
x

x+ 2(p+ 1)

)n+1

− xn+1

n!

∣∣β(n)
p (x+ 1)

∣∣} = 1.

Also,

lim
x→0

∆′n(x) = lim
x→0

{
(n+ 1)xn

n!

∣∣β(n)
p (x)

∣∣− xn+1

n!

∣∣β(n+1)
p (x)

∣∣}
= lim

x→0

{
(n+ 1)xn+1

(x+ 2(p+ 1))n+2
− (n+ 1)xn

(x+ 2(p+ 1))n+1

+
xn+1

n!

∣∣β(n+1)
p (x+ 1)

∣∣− (n+ 1)
xn+1

n!

∣∣β(n)
p (x+ 1)

∣∣}
= 0.
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(b) By using (21) and (33), we obtain

n!

xn+1
∆′n(x) =

n+ 1

x

∣∣β(n)
p (x)

∣∣− ∣∣β(n+1)
p (x)

∣∣
= (n+ 1)

∫ ∞
0

e−xt dt

∫ ∞
0

tn(1− e−2(p+1)t)

1 + e−t
e−xt dt

−
∫ ∞

0

tn+1(1− e−2(p+1)t)

1 + e−t
e−xt dt

= (n+ 1)

∫ ∞
0

[∫ t

0

sn(1− e−2(p+1)s)

1 + e−s
ds

]
e−xt dt

−
∫ ∞

0

tn+1(1− e−2(p+1)t)

1 + e−t
e−xt dt

=

∫ ∞
0

K(t)e−xt dt,

where

K(t) = (n+ 1)

∫ t

0

sn(1− e−2(p+1)s)

1 + e−s
ds− tn+1(1− e−2(p+1)t)

1 + e−t
.

Then K(0) = limt→0K(t) = 0. Furthermore,

K ′(t) = −2(p+ 1)
tn+1e−2(p+1)t

1 + e−t
− tn+1e−t

1− e−2(p+1)t

(1 + e−t)2
< 0,

which implies thatK(t) decreasing. Hence for t > 0, we haveK(t) < K(0) = 0.
Therefore ∆′n(x) < 0 which gives the desired result.

3 Open Problem

The function xβp(x) has been shown to be completely monotonic in Theo-

rem 2.13. Show that the generalized form xn+1

n!

∣∣∣β(n)
p (x)

∣∣∣, x > 0, n ∈ N0 is

completely monotonic.
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