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Abstract

In this paper, we introduce a p-generalization of the Nielsen’s
B-function. We further study among other things, some prop-
erties such as convexity, monotonicity and inequalities of the
new function. In the end, we pose an open problem.

Keywords: Nielsen’s [-function, p-generalization, p-Gamma function,
convolution theorem for Laplace transforms, completely monotonic.
2010 Mathematics Subject Classification: 33E50, 26A48, 26A51.

1 Introduction

The Nielsen’s g-function may be defined by any of the following equivalent
forms (see [2], [3], [8], [11]).
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where ¢(z) = <L InT'(z) is the digamma or psi function and I'(z) is the Euler’s

Gamma function. It is known to satisfy the properties:
1
B +1) == — (a), )
T
1—2)= i 6
Bla) + 5 z) sin Tx (6)

Lately, this special function has been studied in diverse ways. For instance, in
[8], the author investigated some properties and inequalities of the function.
Also, in [9], the function was applied to study some monotonicity and convex-
ity properties and some inequalities involving a generalized form of the Wallis’
cosine formula. Then in [10], the author proved some monotonicity and con-
vexity properties of the function. In this paper, we continue the investigation
by establishing a p-generalization of this special function. In the meantime,
we recall the following definitions concerning the p-analogue of the Gamma
function. We shall use the notations N = {1,2,3,4,...} and Ny = NU{0}.

The p-analogue (also known as p-extension or p-deformation) of the Gamma
function is defined for p € N and x > 0 as [1], [12]
p'p* p*

Fp(m):x(x—l—l)...(x—kp):x(l+%)...(l+%) (7)

_ / (1 _ é)t al (8)

where lim, ,. I')(z) = I'(z). It satisfies the identities [5]

px
r 1)=—T
p(z+1) ct+p+1 p(2),
b
[,(1) =——.
(1) =2
The p-analogue of the digamma functions is defined for > 0 as [6]
) = Ty () = mp— Y )
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and satisfies the relation [5]
1 1
) — . 11
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Also, it is well known in the literature that the integral
m' - m —xt
o :/o t"e "t dt (12)

holds for x > 0 and m € Nj,.
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2 A p-Generalization of Nielsen’s S-function

In this section, we introduce a p-generalization of the Nielsen’s S-function and
further study some of its properties.

Definition 2.1. The p-generalization of the Nielsen’s S-function is defined for

p € N as
1 r+1 x
5p<x>=§{¢p< ; )—¢p(§)}, >0, (13)
p
1 1
= — 0 14
;(271—1—:6 2n—|—:c+1> = (14)
00 1 — —2(p+1)t
= ITC T et dt, x>0, (15)
0 1 + et
L 24D
= / 1——|—ttx_1 dt, x>0, (16)
0

where §,(x) — B(z) as p — oo.

Remark 2.2. The relations (14) and (15) are respectively derived from (9)
and (10), and by a change of variable, (16) is obtained from (15).

Proposition 2.3. The function 5,(x) satifies the functional equation

1 1

Bp(r+1) = —

T m — Bp(). (17)

Proof. By using representation (16), we obtain
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which completes the proof. O

As an immediate consequence of (17), we obtain the upper bound

o) < = -
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Also, successive applications of (17) yields the generalized form
s+n+1 n—1 (_1)s+n

(4 n)
a;+8 Ox+5+2(p+1)

+(=1)"By(x), n € N. (19)

ﬁw
L

Also, successive differentiations of (13), (15), (16) and (17) yields respectively

5() = 5o {w}f) (“”;1) o (5 )} (20)
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where n € Ny and 8" (z) — 8™ (z) as p — occ.
Remark 2.4. It follows easily from (20)-(22) that:

(a) Bp(x) is positive and decreasing,
(b) ;(,n) (x) is positive and decreasing if n € Ny is even,

(c) ;(,n) (x) is negative and increasing if n € Ny is odd.

Theorem 2.5. The function B,(x) satisfies the inequality

B (E+2) < B@IF BT wy e (0,%), (24)

where u > 1, v > 1 and % + % = 1. Put in another way, the function [5,(x) is
logarithmically convex on (0, 00).

Proof. Let u > 1, v > 1 and %—i—% =1 and z,y € (0,00). Then Holder’s
inequality implies

17— £200+)
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B <u * v /0 14t
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< / —— " dt / ——tlat
0 1+t 0 1+t

= [B,(2)]" [8,(y)]" ,

which gives the desired result. O
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Remark 2.6. As a by-product of Theorem 2.5, we obtain immediately the
following results.

(a) The inequality 3,(x)B3)(r) > (ﬁz’o(x))Q holds for z € (0, 00).

(b) The function Bo(®) 4 increasing on (0, 00).

Bp(z)
Corollary 2.7. The inequalities
[Bo(@ + )] < By(x)By(v), (25)
Bo(z +y) < Bp(x) + By(y), (26)

hold for z,y € (0,00).

Proof. Let u = v = 2 in Theorem 2.5. Then by the decreasing property of
By(x), it follows easily that

o+ ) < 5 (52) < 3@, 7

which gives (25). Next, by (27) and the basic AM-GM inequality, we obtain

B+ 1) < @ s < 2D+ B < gy g,

which gives (26). O
Corollary 2.8. The inequality

B2) _ _ Bz
BE+D) ~ B0)

1< (28)

holds for z > 1.

Proof. Let z > 1. Then the left-hand side of (28) follows directly from the
decreasing property of f,(z). Next, by letting v = z —1land y = 2+ 1 in
right-hand side of (27), we obtain

B(2) < Bp(z = 1)By(z + 1), (29)

which when rearranged, gives the right-hand side of (28). Alternatively, we

Bf é?x(_?l) for x > 0. Then

Bix)  Byx+1)
Bo(@) ~ Byle+ 1)

which implies that f(z) is decreasing. Hence f(z) < f(z — 1) which also gives
the right-hand side of (28). O

could proceed as follows. Let f(z) =

f'(x) = f(x)

< 0,
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Theorem 2.9. The function
o(x) =uBy(x), wu>0, (30)
is convez on (0, 00).

Proof. Let a > 1,b> 1, % + % =1 and z,y € (0,00). Then the log-convexity
of B,(z) implies

o (E+2) =uitts, (2 +2) <@l B¢

and by the classical Young’s inequality, we obtain

Q=

[ By(2)]* [u?By(y)]F < =

Hence, ¢(z) is convex on (0, 00). O

Theorem 2.10. The inequality

o ()} B0 o)

holds for x > 0.

Proof. We make use of the Hermite-Hadamard’s inequality

1(55) <52 [ 1ora < OTIE, &

for a convex function f : (a,b) C R — R. Since every logarithmically convex
function is also convex, it follows that (8,(z) is convex. Now, letting f(s) =

Bp(s) =3 {p (22) — ¢, (£)}, a=2>0and b==xz+ 1 in (32) gives
U Blat 1)+ By)

1 r 1 T
) < I R bl
Bp (w+2) < lan(2 +2) lan(2> o= ,

which by (17) implies

@(x+%>ghf¢@+1I?@)<1(l___;L__).

r x+2p+1)

Then by exponentiation, we obtain the required result (31). ]
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Remark 2.11. The function Fp(f?iff )(;) is a special case of
L), (y
Tp(x7y) = I])-—\<2(>xiz;<> ); %y > 07
P\ 72

which is a p-analogue of Gurland’s ratio [4] for the Gamma function. For
more information concerning the Gurland’s ratio, one may refer to [7] and the
related references therein.

Lemma 2.12. Let f(t) and g(t) be any two functions with convolution f*g =
fot f(s)g(t — s)ds. Then the Laplace transform of the convolution is given as

LA{f*g}t=L{f}LA{g}.
That s

/OOO {/Otf(s)g(t —s) ds] e~ dt = /OOO F(t)e =t dt /OOO ot dt.  (33)

The above lemma is well-known in the literature as the the convolution
theorem for Laplace transforms. We shall rely on it in proving some of the
results that follow.

Theorem 2.13. The function Q(x) = xf,(x) is completely monotonic on
(0, 00).

Proof. Recall that a function f : (0,00) — R is said to be completely mono-
tonic on (0,00) if f has derivatives of all order and (—1)"f™(z) > 0 for all
x € (0,00) and n € N. By repeated differentiation, we obtain

Q"™ (z) = nBy"(x) + 2B (x). (34)
Then by (12), (15) and (33), we obtain
1

CUCTE _ i [24000) + )

00 00 yn—1(1 _ —2(p+1)t
= —n/ e vt dt/ G ¢ )e_”’t dt
0 0

1+et?

o0 ¢n(1 — —2(p+1)t
+ / (1-e )6_” dt
0 1 -+ €7t

oo t n—1 1 — —2(p+1)s
= —n/ / Gl ¢ )ds e "t dt
0 0 I+es

oe) (] — —2(p+1)t
+ / ( € )e—xt dt
0 I+et

= / W (t)e " dt,
0
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where

t gn—1(] _ o—2(p+1)s (1 — e~ 20+t
W(t):—n/ Tl-e ) s L =e ),
0 1+es 1+et

Then W(0) = lim;_,o W(t) = 0. In addition,
tre—2(+1)t 1 — e—2(+1)t
W'(t) =2 )——————— 4 te >0

which implies that W () increasing. Hence for ¢ > 0, we have W (t) > W(0) =
0. Therefore,
(—=1)"Q™(x) > 0 (35)

which concludes the proof. O

Remark 2.14. Theorem 2.13 implies that Q(z) = z8,(z) is decreasing and
convex. These further imply that

Bp(x) + xB,(z) <0 (36)

and
26,(x) + 23, (z) > 0 (37)

respectively.

Corollary 2.15. The function H(x) = x3,(v) is increasing and concave on
(0, 00).

Proof. By (34), (35) and (37), we obtain
H'(2) = B(z) + o (x) > 28)(x) + 2B)(z) > O,
H"(w) = 28(2) + 2 (x) < 368,(x) + 2 (x) < 0,
which conclude the proof. ]
Theorem 2.16. The inequality

Bp(zy) < Bp(x) + By(y), (38)
holds for x >0 and y > 1.

Proof. Let ¢(x,y) = By(xy) — By(z) — B,(y) for > 0 and y > 1. By fixing v,
we obtain

& a,9) = uBy(ay) ~ Byfa)
Loy eg) — 8 (o)

T
>0,
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since /3, () is increasing. Hence, ¢(x,y) is increasing. Then for 0 < z < oo,
we obtain

P(z,y) < lim ¢(x,y) = —F,(y) <O,

T—00

which gives the result (38). O
Remark 2.17. Note that ‘@(}") (:(;)‘ = (=1)"8 (z) for all n € Ny. In respect
of this, the recurrence relation (23) yields

n! n!
gl (x4 2(p+ 1)) *!

|85+ 1) = — 8 ()] (39)

It is also worth noting that, if F(z ‘Bp

(2) = = |8 ()],
This implies that the ‘ D (x)’ is decreasing for all n € Ny. Furthermore, it
follows readily from (39) that

| |
W) < i : 40
|8, ()] < 2 (2 +2(p+ 1)t (40)
This is a generalization of (18).
Theorem 2.18. Let A, be defined for x > 0 and n € Ny as
+1
An(r) = |85 (2)]. (41)

Then,

(a) lim, o Ap(z) =1 and lim, o Al (z) =0 .
(b) A,(x) is decreasing.

Proof. (a) By virtue of (39), we obtain

n+1
lim A, (2) = lim 41— (——0—— ) —
z—0 z—0 {1:—|—2(p—|— 1)

I(,”)(:r;—l— 1)!} =1.

Also,
o . [(n+ 1 o
lim A, (x) :glfi%{ \5 )| = — |8 @)]
 tim { (n + Dam (n+ 1)z"
(37 +2(p+ 1)) (z+2(p+ 1))

|ﬁn+1 :L’+1|—n+1 n+1‘ﬂ )‘}
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(b) By using (21) and (33), we obtain

! 1
@) = R ) - )

00 0 tn(l _ 6—2(p+1)t>
(n+1) /o e /0 = e

00 yntl(] _ p—2(p+ D)t
_ / < € )e—mt dt
0 ]. + e_t

00 tgn(] — —2(p+1)s
:(n+1)/ {/ l-e )ds} e "t dt
0 0 1+es

e’} tn+1 1 - 72(p+1)t
_ / ( € )effltt dt
1+et

0
= / K(t)e ™ dt,
0

where
ton(1 _ »,—2(p+1)s nt+l/1 _ ,—2(p+1)t
s"(1—e ) "1 —e )
K(t) = 1 ds —
(1) =(n+ )/0 14+ e s 1+4+et
Then K(0) = lim,_,o K(¢) = 0. Furthermore,
gl e—2(p+1)t 1 — e2(+1)t
K'(t) = -2 ) " <0
( ) (p+ ) 1 + e_t (1 + e_t)2 Y

which implies that K (t) decreasing. Hence for ¢ > 0, we have K (t) < K(0) = 0.
Therefore Al () < 0 which gives the desired result. O

3 Open Problem

The function zf,(z) has been shown to be completely monotonic in Theo-
B,()")(:C)‘, r>0,n e Nyis

rem 2.13. Show that the generalized form x’;—fl

completely monotonic.
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