Int. J. Open Problems Compt. Math., Vol. 11, No. 1, March 2018 ISSN 1998-6262; Copyright ©ICSRS Publication, 2018 www.i-csrs.org

Fuglede-Putnam theorem for *p*-*w*-hyponormal

or class \mathcal{Y} operators

T. Prasad and A. Bachir

The Institute of Mathematical Sciences,CIT Campus, Chennai-600113, India. e-mail: prasadvalapil@gmail.com Department of Mathematics, Faculty of Science,King Khalid University, Abha, P.O.Box 9004 Kingdom Saudi Arabia e-mail:bachir_ahmed@hotmail.com

Received 15 October 2017; Accepted 3 December 2017

Abstract

An asymmetric Fuglede-Putnam Theorem for p-w-phyponormal operators and class \mathcal{Y} operators is proved. As a consequence of this result, we obtain that the range of generalized derivation induced by these classes of operators is orthogonal to its kernel.

Keywords: Fuglede-Putnam theorem, p- w-hyponormal operator, class \mathcal{Y} operator.

2010 Mathematics Subject Classification: 47B20, 47B10

1 Introduction

For complex spaces \mathcal{H} and \mathcal{K} , let $\mathcal{B}(\mathcal{H}) \mathcal{B}(\mathcal{K})$ and $\mathcal{B}(\mathcal{H}, \mathcal{K})$ denote the algebra of all bounded operators on \mathcal{H} , the algebra of all bounded operators on \mathcal{K} and the set of all bounded transformations from \mathcal{H} to \mathcal{K} respectively.

A bounded operator $A \in \mathcal{B}(\mathcal{H})$, set, as usual, $|A| = (A^*A)^{\frac{1}{2}}$ and $[A^*, A] = A^*A - AA^* = |A^*|^2 - |A|^2$ (the self commutator of A) and consider the following definitions: A is normal if $A^*A = AA^*$, hyponormal if $A^*A \ge AA^*$, *p*-hyponormal if $|A|^{2p} \ge |A^*|^{2p}$ for $0 and semi hyponormal if <math>|A| \ge |A^*|$

. The lowner-Heinz inequality implies that if A is q-hyponormal, then A is p-hyponormal for all $0 . An invertible operator <math>A \in \mathcal{B}(\mathcal{H})$ is called *log*-hyponormal if $\log(A^*A) = \log(AA^*)$. Clearly every invertible p-hyponormal operator is log hyponormal.

Let A = U|A| be the polar decomposition of A. A. Aluthge[1] defined the operator $\widetilde{A} = |A|^{\frac{1}{2}}U|A|^{\frac{1}{2}}$ which is called the Aluthge transformation of A. An operator A is said to be *w*-hyponormal if $|\widetilde{A}| \ge |A| \ge |\widetilde{A}^*|$. An operator A is said to be *p*-*w* - hyponormal if $|\widetilde{A}|^p \ge |A|^p \ge |\widetilde{A}^*|^p$ [13]. It is well known that the class of *w* - hyponormal operators contains, both *p*- and log - hyponormal operators [2]. These classes are related by proper inclusion

hyponormal $\subset p$ -hyponormal $\subset w$ -hyponormal $\subset p$ -w-hyponormal.

It is well known that if A is w-hyponormal, then A is semi- hyponormal and if A is p-w-hyponormal, then \widetilde{A} is $\frac{p}{2}$ - hyponormal [13].

An operator A is said to be class \mathcal{Y}_{α} for $\alpha \geq 1$ if there exist a positive number k_{α} such that

$$|AA^* - A^*A|^{\alpha} \leq k_{\alpha}^2 (A - \lambda)^* (A - \lambda)$$
 for all $\lambda \in \mathbb{C}$.

If $1 \leq \alpha \leq \beta$, then $\mathcal{Y}_{\alpha} \subset \mathcal{Y}_{\beta}$. Recall that an operator $A \in \mathcal{B}(\mathcal{H})$ is said to be dominant if for each $\lambda \in \mathbb{C}$ there exists a positive number M_{λ} such that

$$(A - \lambda)(A - \lambda)^* \le M_\lambda (A - \lambda)^* (A - \lambda).$$

If the constants M_{λ} are bounded by a positive operator M, then A is said to be M-hyponormal. Evidently M-hyponormal operators are dominant. Let $\mathcal{Y} = \bigcup_{1 \le \alpha} \mathcal{Y}_{\alpha}$. We remark that M-hyponormal are class \mathcal{Y}_2 [11].

The famous Fuglede-Putnam theorem (see., [7, 9]) asserts that if $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ are normal and AX = BX for some $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$, then $A^*X = XB^*$. Fuglede-Putnam's Theorem for *p*-hyponormal operators and \mathcal{Y} operators was studied by Mecheri et. al [8], Fuglede-Putnam's Theorem for *w*-hyponormal operators and \mathcal{Y} operators was extensively studied in [4].

Let $A, B \in \mathcal{H}$, we define the generalized derivation $\delta_{A,B}$ induced by A and B as follows

$$\delta_{A,B}(X) = AX - XB$$
 for all $X \in \mathcal{B}(\mathcal{H})$

J. Anderson and C. Foias [3] proved that if A and B are normal, S is an operator such that AS = SB, then

$$||\delta_{A,B}(X) - S|| \ge ||S||$$
 for all $X \in \mathcal{B}(\mathcal{H})$

where ||.|| is the usual operator norm. Hence the range of δ_{AB} is orthogonal to the null space of δ_{AB} . The orthogonality here is understood to be in the sense of Birkhoff-James [3].

The purpose of this paper is to prove that the Fuglede - Putnam theorems remains true if $A \in \mathcal{B}(\mathcal{H})$ is p-w - hyponormal and $B^* \in \mathcal{B}(\mathcal{K})$ is class \mathcal{Y} operator. As a consequence of this result, we give a similar orthogonality result by proving that the range of the generalized derivation induced by above classes of operators is orthogonal to its kernel.

2 Preliminaries

The following result was proved in [13] by Yang Changsen Li Haiying.

Lemma 2.1 [13] Let A be p-w-hyponormal operator. If \widetilde{A} is normal, then $A = \widetilde{A}$.

The following theorem due to Duggal[6] is well known and useful.

Theorem 2.2 [6] If A, B^* are p-hyponormal operators satisfying AX = XB for some operator X, then $A^*X = XB^*$. ranX reduces A, $ker^{\perp}X$ reduces B and $A|_{\overline{ranX}}$, $B|_{ker^{\perp}X}$ are unitarily equivalent normal operators.

Theorem 2.3 [10] Let $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$. Then the following assertions are equivalent.

(i) A, B satisfy Fuglede - Putnam theorem.

(ii) If AC = CB for some operator $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$, then ranC reduces A, $(kerC)^{\perp}$ reduces B and $A|_{\overline{ranC}}$, $B|_{(kerC)^{\perp}}$ are normal.

Lemma 2.4 ([11]) Let $A \in \mathcal{B}(\mathcal{H})$ be a class \mathcal{Y} operator and $\mathcal{M} \subset \mathcal{H}$ invariant subspace under A. If $A|_{\mathcal{M}}$ is normal, then \mathcal{M} reduces A.

Recall that $A \in \mathcal{B}(\mathcal{H})$ is said to have the single valued extension property at λ (SVEP for short) if for every neighborhood \mathcal{U} of λ , the only analytic function $f : \mathcal{U} \to \mathcal{H}$ which satisfies the equation $(A - \lambda)f(\lambda) = 0$ for all $\lambda \in \mathcal{U}$ is the function f = 0. We say that $A \in \mathcal{B}(\mathcal{H})$ satisfies the SVEP property if A has the single valued extension property at every $\lambda \in \mathbb{C}$. It is well known that the class of p-hyponormal operators satisfies SVEP.

3 Main Results

Lemma 3.1 Let A be p-w-hyponormal operator and $\mathcal{M} \subset \mathcal{H}$ be an invariant subspace of A. Then the restriction $A \mid \mathcal{M}$ is p-w-hyponormal.

Proof.

Let P be the orthogonal projection on \mathcal{M} . From AP = PAP, we deduce the following inequality by using Lowner-Heinz theorem

$$|(AP)^*|^p \le |A^*|^p \tag{1}$$

Also we deduce,

$$|AP| \ge P |A| P \tag{2}$$

and so $P \mid AP \mid P \geq P \mid A \mid P$. Thus we have, $\mid AP \mid \geq \mid A \mid$ holds on $\overline{ran P}$. Since A is p-w-hyponormal operator, we have

$$|A^*|^p \le (|A^*|^{\frac{1}{2}}|A||A^*|^{\frac{1}{2}})^{\frac{p}{2}}$$

Then by (1), we have

$$|(AP)^*|^p \le (|(AP)^*|^{\frac{1}{2}}|A||(AP)^*|^{\frac{1}{2}})^{\frac{p}{2}}$$
 (3)

Now we have the following inequality

$$|(AP)^{*}|^{\frac{1}{2}}|A||(AP)^{*}|^{\frac{1}{2}} \le |(AP)^{*}|^{\frac{1}{2}}|AP||(AP)^{*}|^{\frac{1}{2}}.$$
 (4)

Then by Lowner-Heinz theorem

$$(|(AP)^*|^{\frac{1}{2}}|A||(AP)^*|^{\frac{1}{2}})^{\frac{p}{2}} \le (|(AP)^*|^{\frac{1}{2}}|AP||(AP)^*|^{\frac{1}{2}})^{\frac{p}{2}}.$$
 (5)

From from (3) and (4), we deduce that

$$|(AP)^*|^p \le (|(AP)^*|^{\frac{1}{2}}|AP||(AP)^*|^{\frac{1}{2}})^{\frac{p}{2}}$$

holds on $\overline{ran P}$ and so AP is *p*-*w*-hyponormal. \Box

Theorem 3.2 Let $A \in \mathcal{B}(\mathcal{H})$ be an injective *p*-*w*-hyponormal (0) $and <math>B^* \in \mathcal{B}(\mathcal{K})$ be class \mathcal{Y} . If AC = CB for some operator $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$, then $A^*C = CB^*$.

Proof. Since $B^* \in \text{class } \mathcal{Y}$, there exist a positive k_{α} for $\alpha \geq 1$ such that $|BB^* - B^*B|^{\alpha} \leq k_{\alpha}^2(B - \lambda)^*(B - \lambda)$ for all $\lambda \in \mathbb{C}$ Then by [5], for $x \in |BB^* - B^*B|^{\frac{\alpha}{2}} \mathcal{K}$ there exist a bounded function $f : \mathbb{C} \to \mathcal{K}$

Then by [5], for $x \in |BB^* - B^*B|^{\frac{\alpha}{2}}\mathcal{K}$ there exist a bounded function $f : \mathbb{C} \to \mathcal{K}$ such that

$$(B - \lambda)f(\lambda) = x$$
 for all $\lambda \in \mathbb{C}$.

Since A is *p*-w-hyponormal, then \widetilde{A} is *p*-hyponormal, this yields

$$(\widetilde{A} - \lambda)|A|^{\frac{1}{2}}Cf(\lambda) = |A|^{\frac{1}{2}}(A - \lambda)Cf(\lambda).$$

From AC = CB, it follows that

$$(\widetilde{A} - \lambda)|A|^{\frac{1}{2}}f(\lambda) = |A|^{\frac{1}{2}}C(B - \lambda)f(\lambda)$$
$$= |A|^{\frac{1}{2}}Cx, \text{ for all } \lambda \in \mathbb{C}.$$

Now we claim that $|A|^{\frac{1}{2}}Cx = 0$. If $|A|^{\frac{1}{2}}Cx \neq 0$, there exist an entire analytic function $g : \mathbb{C} \to \mathcal{H}$ such that $(A - \lambda)g(\lambda) = |A|^{\frac{1}{2}}Cx$ because *p*-hyponormal has SVEP.

Since $g(\lambda) = (A - \lambda)^{-1} |A|^{\frac{1}{2}} Cx \to 0$ as $n \to \infty$, $g(\lambda) = 0$ by Liouville's theorem. Thus $|A|^{\frac{1}{2}} Cx = 0$. This is a contradiction. Hence Fuglede-Putnam theorem for p-w-hyponormal or class \mathcal{Y} operators

$$|A|^{\frac{1}{2}}C|BB^* - B^*B|^{\frac{\alpha}{2}}\mathcal{K} = 0.$$

Since ker $A = \text{ker } |A| = \{0\}$ we get

$$C(BB^* - B^*B) = 0$$

Because AC = CB, $\overline{\operatorname{ran}C}$ and $(\ker^{\perp} C)$ are invariant subspaces of A and B^* respectively, we can write A, B and C as

$$A = \begin{pmatrix} A_1 & T \\ 0 & A_2 \end{pmatrix} \quad \text{on} \quad \mathcal{H} = \overline{\operatorname{ran}C} \oplus \overline{\operatorname{ran}C}^{\perp}$$
$$B = \begin{pmatrix} B_1 & 0 \\ S & B_2 \end{pmatrix} \quad \text{on} \ \ker C^{\perp} \oplus \ker C$$

and

$$C = \begin{pmatrix} C_1 & 0\\ 0 & 0 \end{pmatrix} \quad \text{on } \ker C^{\perp} \oplus \ker C \to \overline{\operatorname{ran}C} \oplus \overline{\operatorname{ran}C}^{\perp}$$

and so

$$BB^* - B^*B = \begin{pmatrix} B_1 & 0 \\ S & B_2 \end{pmatrix} \begin{pmatrix} B_1^* & S^* \\ 0 & B_2^* \end{pmatrix} \begin{pmatrix} B_1^* & S^* \\ 0 & B_2^* \end{pmatrix} \begin{pmatrix} B_1 & 0 \\ S & B_2 \end{pmatrix}$$
$$= \begin{pmatrix} B_1B_1^* - B_1^*B_1 - S^*S & B_1S^* - S^*B_1 \\ (B_1S^* - S^*B_2)^* & SS^* + B_2B_2^* - B_2^*B_2 \end{pmatrix}$$

Thus,

$$\begin{array}{rcl} 0 & = & C(BB^* - B^*B) \\ & = & \left(\begin{array}{cc} C_1(B_1B_1^* - B_1^*B_1 - S^*S) & C_1(B_1S^* - S^*B_1) \\ & 0 & 0 \end{array} \right). \end{array}$$

Since C_1 is injective and has dense range,

$$B_1 B_1^* - B_1^* B_1 - S^* S = 0.$$

Hence,

$$B_1 B_1^* = B_1^* B_1 + S^* S$$

Therefore B_1^* is hyponormal.

Since AC = CB, we get $A_1C_1 = C_1B_1$ where A_1 is p - w hyponormal by Lemma 3.1 and so

$$|A_1|^{\frac{1}{2}}A_1C_1 = |A_1|^{\frac{1}{2}}C_1B_1$$

Since $\widetilde{A_1}$ is $\frac{p}{2}$ - hyponormal and B_1^* is hyponormal, applying Theorem 2.3 $\widetilde{A_1}(|A_1|^{\frac{1}{2}}C_1) = (|A_1|^{\frac{1}{2}}C_1)B_1^*.$

T. Prasad and A. Bachir

Applying Theorem 3.2, it follows that $\widetilde{A_1}|_{ran|A_1|^{\frac{1}{2}}C_1}$ and $B_1|_{ker(|A_1|^{\frac{1}{2}}C_1)}$ are normal.

Since $|A_1|^{\frac{1}{2}}C_1$ is injective, we have $[ker(|A_1|^{\frac{1}{2}}C_1)]^{\perp} = (kerC)^{\perp}$ and $\overline{ran|A_1|^{\frac{1}{2}}C_1}$ = ran C and hence $\widetilde{A_1}$ is normal. Therefore A_1 is normal by Lemma 2.1. Hence

$$A^*C = \begin{pmatrix} A_1^*C_1 & 0\\ 0 & 0 \end{pmatrix} = \begin{pmatrix} C_1B_1^* & 0\\ 0 & 0 \end{pmatrix} = CB^*.$$

Theorem 3.3 If $A \in \mathcal{B}(\mathcal{H})$ be p-w hyponormal (0 such that $ker <math>A \subset \ker A^*$ and $B^* \in \mathcal{B}(\mathcal{K})$ be class \mathcal{Y} . If AC = CB for some operator $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$, then $A^*C = CB^*$.

Proof. Decompose A into normal part A_1 and pure part A_2 as

$$A = A_1 \oplus A_2$$
 on $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$

and let

$$C = \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}$$
 on $\mathcal{K} \to \mathcal{H}_1 \oplus \mathcal{H}_2$

Since ker $A_2 \subset \ker A_2^*$ and A_2 is pure, A_2 is injective. AC = CB implies

$$\begin{pmatrix} A_1C_1\\A_2C_2 \end{pmatrix} = \begin{pmatrix} C_1B_1\\C_2B_2 \end{pmatrix}$$

Hence

$$A^*C = \begin{pmatrix} A_1^*C_1 \\ A_2^*C_2 \end{pmatrix} = \begin{pmatrix} C_1B_1^* \\ C_2B_2^* \end{pmatrix} = CB^*$$

by Theorem 3.2. \Box

Theorem 3.4 If $A \in \mathcal{B}(\mathcal{H})$ be p - w - hyponormal ($0) such that <math>\ker A \subset \ker A^*$ and $B^* \in \mathcal{B}(\mathcal{K})$ be class \mathcal{Y} , then the range of δ_{AB} is orthogonal to the null space of δ_{AB} .

Proof. The pair (A, B) verify the Fuglede-Putnam theorem by Theorem 3.2. Let $C \in \mathcal{B}(\mathcal{H})$. According to the following decompositions of \mathcal{H} .

$$\mathcal{H} = \mathcal{H}_1 = \overline{\operatorname{ran}C} \oplus \overline{\operatorname{ran}C}^{\perp}, \mathcal{H} = \mathcal{H}_2 = \ker C^{\perp} \oplus \ker C$$

we can write A, B, C and X

$$A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}, C = \begin{pmatrix} B_1 & 0 \\ 0 & B_2 \end{pmatrix}, C = \begin{pmatrix} C_1 & 0 \\ 0 & 0 \end{pmatrix}, X = \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix},$$

where A_1 and B_1 are normal operators and X is an operator from H_1 to H_2 . Since AC = CB, $A_1C_1 = C_1B_1$. Hence

$$AX - XB - C = \begin{pmatrix} A_1X_1 - X_1B_1 - C_1 & A_2X_2 - X_2B_2 \\ A_1X_3 - X_3B_1 & A_2X_4 - X_4B_2 \end{pmatrix}$$

Since $C_1 \in \ker(\delta_{A_1,B_1})$ and A_1 and B_1 are normal operators, it yields

$$||AX - XB - C|| \ge ||A_1X_1 - X_1B_1 - C_1|| \ge ||C_1|| = ||C||, \text{ for all } X \in B(H)$$

This means that the range of $\delta_{A,B}$ is orthogonal to the null space of $\delta_{A,B}$.

4 Open Problem

The open problem here is to find classes of nonnormal of operators satisfying the Fuglede-Putnam Property and consequently we obtain the range kernel orthogonality results.

5 Acknowledgments

The authors would like to thank the referees for the useful comments and suggestions.

References

- [1] A. Aluthge, On p-hyponormal operators for 0 , Integral equations operator theory., 13 (1990), 307 315.
- [2] A. Aluthge and D. Wang, On w -hyponormal operators, Integral equations operator theory., 36 (2000), 1 -10.
- [3] J. Anderson and C. Foias, Properties which normal normal operators share with normal derivations and related operators, Pacific J. Math., 61(1975), 313325
- [4] A. Bachir, Fuglede Putnam's theorem for p hyponormal or \mathcal{Y} operators, Ann. Funct. Anal. 4 (2013), no. 1, 53-60.
- [5] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17 (1966), 413 - 415.
- B. P. Duggal, Quasi similar p hyponormal operators, Integr. Equat. Oper. Th., 26 (1996), 338 - 345.

- B. Fuglede, A commutativity theorem for normal operators, Proc. Nat. Acad. Sci., USA, 36 (1950), 35 - 40.
- [8] S. Mecheri, K. Tanahashi and A. Uchiyama, Fuglede Putnam's theorem for p - hyponormal or class \mathcal{Y} operators, Bull. Korean. Math. Soc.,43(2006), 747-753.
- [9] C. R. Putnam, On normal operators in Hilbert spaces, Amer. J. math., 73, (1951), 357 362.
- [10] K. Takahashi, On the converse of the Fuglede Putnam theorem, Acta. Sci. Math (Szeged)., 43, (1981), 123-125.
- [11] A. Uchiyama and T. Yoshino, On the class Y operators, Nihonkai Math. J., 8 (1997), 179- 194.
- [12] J. G. Stampfli and B. L. Wadhwa, On dominant operators, Monatsh. Math., 84 (1977), 143 - 153
- [13] Yang Changsen Li Haiying, Properties of p-w-hyponormal operators, Appl. Math. J. Chinese Univ. Set. B2006,21(1): 64-68
- [14] Yang Changsen and Li Haiying, A note on p-w-hyponormal operators, Acta Mathematica Sinica (Chinese), 2006, 49(1)19-25.