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Abstract

An asymmetric Fuglede-Putnam Theorem for p-w-phyponormal
operators and class Y operators is proved. As a consequence
of this result, we obtain that the range of generalized deriva-
tion induced by these classes of operators is orthogonal to its
kernel.
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1 Introduction

For complex spaces H and K, let B(H) B(K) and B(H,K) denote the algebra
of all bounded operators on H , the algebra of all bounded operators on K and
the set of all bounded transformations from H to K respectively.

A bounded operator A ∈ B(H), set , as usual, |A| = (A∗A)
1
2 and [A∗, A] =

A∗A − AA∗ = |A∗|2 − |A|2 ( the self commutator of A) and consider the
following definitions: A is normal if A∗A = AA∗, hyponormal if A∗A ≥ AA∗,
p-hyponormal if |A|2p ≥ |A∗|2p for 0 < p < 1 and semi hyponormal if |A| ≥ |A∗|
. The lowner-Heinz inequality implies that if A is q-hyponormal, then A is p-
hyponormal for all 0 < p ≤ q. An invertible operator A ∈ B(H) is called log-
hyponormal if log(A∗A) = log(AA∗). Clearly every invertible p-hyponormal
operator is log hyponormal.
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Let A = U |A| be the polar decomposition of A. A. Aluthge[1] defined the

operator Ã = |A| 12U |A| 12 which is called the Aluthge transformation of A. An

operator A is said to be w-hyponormal if |Ã| ≥ |A| ≥ |Ã∗| . An operator A is

said to be p-w - hyponormal if |Ã|p ≥ |A|p ≥ |Ã∗|p [13]. It is well known that
the class of w - hyponormal operators contains, both p- and log - hyponormal
operators [2]. These classes are related by proper inclusion

hyponormal ⊂ p-hyponormal ⊂ w-hyponormal ⊂ p-w-hyponormal.

It is well known that if A is w-hyponormal, then Ã is semi- hyponoormal
and if A is p-w-hyponormal, then Ã is p

2
- hyponormal [13].

An operator A is said to be class Yα for α ≥ 1 if there exist a positive
number kα such that

|AA∗ − A∗A|α ≤ k2α(A− λ)∗(A− λ) for all λ ∈ C.

If 1 ≤ α ≤ β, then Yα ⊂ Yβ. Recall that an operator A ∈ B(H) is said to
be dominant if for each λ ∈ C there exists a positive number Mλ such that

(A− λ)(A− λ)∗ ≤Mλ(A− λ)∗(A− λ).

If the constants Mλ are bounded by a positive operator M , then A is said
to be M -hyponormal. Evidently M -hyponormal operators are dominant. Let
Y =

⋃
1≤α Yα. We remark that M -hyponormal are class Y2 [11].

The famous Fuglede-Putnam theorem ( see., [7, 9]) asserts that if A ∈ B(H)
and B ∈ B(K) are normal and AX = BX for some X ∈ B(K,H), then
A∗X = XB∗. Fuglede-Putnam’s Theorem for p-hyponormal operators and Y
operators was studied by Mecheri et. al [8], Fuglede-Putnam’s Theorem for
w-hyponormal operators and Y operators was extensively studied in [4].

Let A,B ∈ H, we define the generalized derivation δA,B induced by A and
B as follows

δA,B(X) = AX −XB for all X ∈ B(H)

J. Anderson and C. Foias [3] proved that if A and B are normal, S is an
operator such that AS = SB, then

||δA,B(X)− S|| ≥ ||S|| for all X ∈ B(H)

where || .|| is the usual operator norm. Hence the range of δAB is orthogonal
to the null space of δAB. The orthogonality here is understood to be in the
sense of Birkhoff-James [3].

The purpose of this paper is to prove that the Fuglede - Putnam theorems
remains true if A ∈ B(H) is p-w - hyponormal and B∗ ∈ B(K) is class Y
operator. As a consequence of this result, we give a similar orthogonality
result by proving that the range of the generalized derivation induced by above
classes of operators is orthogonal to its kernel.
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2 Preliminaries

The following result was proved in [13] by Yang Changsen Li Haiying.

Lemma 2.1 [13] Let A be p-w-hyponormal operator. If Ã is normal, then

A = Ã.

The following theorem due to Duggal[6] is well known and useful.

Theorem 2.2 [6] If A,B∗ are p-hyponormal operators satisfying AX =
XB for some operator X, then A∗X = XB∗. ranX reduces A, ker⊥X reduces
B and A|ranX , B|ker⊥X are unitarily equivalent normal operators.

Theorem 2.3 [10] Let A ∈ B(H) and B ∈ B(K). Then the following
assertions are equivalent.
(i) A,B satisfy Fuglede - Putnam theorem.
(ii) If AC = CB for some operator C ∈ B(K,H), then ranC reduces A,
(kerC)⊥ reduces B and A|ranC, B|(kerC)⊥ are normal.

Lemma 2.4 ([11]) Let A ∈ B(H) be a class Y operator and M ⊂ H in-
variant subspace under A. If A|M is normal, thenM reduces A.

Recall that A ∈ B(H) is said to have the single valued extension property at λ
(SVEP for short) if for every neighborhood U of λ, the only analytic function
f : U → H which satisfies the equation (A − λ)f(λ) = 0 for all λ ∈ U is the
function f = 0. We say that A ∈ B(H) satisfies the SVEP property if A has
the single valued extension property at every λ ∈ C. It is well known that the
class of p-hyponormal operators satisfies SVEP.

3 Main Results

Lemma 3.1 Let A be p-w-hyponormal operator andM⊂ H be an invari-
ant subspace of A. Then the restriction A | M is p-w-hyponormal.

Proof.
Let P be the orthogonal projection on M. From AP = PAP , we deduce the
following inequality by using Lowner-Heinz theorem

| (AP )∗ |p≤| A∗ |p (1)

Also we deduce,

| AP |≥ P | A | P (2)
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and so P | AP | P ≥ P | A | P . Thus we have, | AP |≥| A | holds on ranP .
Since A is p-w-hyponormal operator, we have

| A∗ |p≤ (| A∗ |
1
2 | A || A∗ |

1
2 )

p
2

Then by (1), we have

| (AP )∗ |p≤ (| (AP )∗ |
1
2 | A || (AP )∗ |

1
2 )

p
2 (3)

Now we have the following inequality

| (AP )∗ |
1
2 | A || (AP )∗ |

1
2≤| (AP )∗ |

1
2 | AP || (AP )∗ |

1
2 . (4)

Then by Lowner-Heinz theorem

(| (AP )∗ |
1
2 | A || (AP )∗ |

1
2 )

p
2 ≤ (| (AP )∗ |

1
2 | AP || (AP )∗ |

1
2 )

p
2 . (5)

From from (3) and (4), we deduce that

| (AP )∗ |p≤ (| (AP )∗ |
1
2 | AP || (AP )∗ |

1
2 )

p
2

holds on ranP and so AP is p-w-hyponormal. �

Theorem 3.2 Let A ∈ B(H) be an injective p-w-hyponormal (0 < p ≤ 1)
and B∗ ∈ B(K) be class Y. If AC =CB for some operator C ∈ B(K,H), then
A∗C =CB∗.

Proof. Since B∗ ∈ class Y , there exist a positive kα for α ≥ 1 such that
|BB∗ −B∗B|α ≤ k2α(B − λ)∗(B − λ) for all λ ∈ C

Then by [5], for x ∈ |BB∗−B∗B|α2K there exist a bounded function f : C→ K
such that

(B − λ)f(λ) = x for all λ ∈ C.

Since A is p-w-hyponormal, then Ã is p-hyponormal, this yields

(Ã− λ)|A|
1
2Cf(λ) = |A|

1
2 (A− λ)Cf(λ).

From AC = CB, it follows that

(Ã− λ)|A|
1
2f(λ) = |A|

1
2C(B − λ)f(λ)

= |A|
1
2Cx, for all λ ∈ C.

Now we claim that |A| 12Cx = 0. If |A| 12Cx 6= 0, there exist an entire analytic

function g : C → H such that (A − λ)g(λ) = |A| 12Cx because p-hyponormal
has SVEP .
Since g(λ) = (A−λ)−1|A| 12Cx→ 0 as n→∞, g(λ) = 0 by Liouville’s theorem.

Thus |A| 12Cx = 0. This is a contradiction. Hence
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|A| 12C|BB∗ −B∗B|α2K = 0.

Since ker A =ker |A| = {0} we get

C(BB∗ −B∗B) = 0

Because AC = CB, ranC and (ker⊥C) are invariant subspaces of A and B∗

respectively, we can write A,B and C as

A =

(
A1 T
0 A2

)
on H = ranC ⊕ ranC

⊥

B =

(
B1 0
S B2

)
on kerC⊥ ⊕ kerC

and

C =

(
C1 0
0 0

)
on kerC⊥ ⊕ kerC → ranC ⊕ ranC

⊥

and so

BB∗ −B∗B =

(
B1 0
S B2

)(
B∗1 S∗

0 B∗2

)(
B∗1 S∗

0 B∗2

)(
B1 0
S B2

)
=

(
B1B

∗
1 −B∗1B1 − S∗S B1S

∗ − S∗B1

(B1S
∗ − S∗B2)

∗ SS∗ +B2B
∗
2 −B∗2B2

)
Thus,

0 = C(BB∗ −B∗B)

=

(
C1(B1B

∗
1 −B∗1B1 − S∗S) C1(B1S

∗ − S∗B1)
0 0

)
.

Since C1 is injective and has dense range,

B1B
∗
1 −B∗1B1 − S∗S = 0.

Hence,
B1B

∗
1 = B∗1B1 + S∗S

Therefore B∗1 is hyponormal.
Since AC = CB, we get A1C1 = C1B1 where A1 is p − w hyponormal by
Lemma 3.1 and so

|A1|
1
2A1C1 = |A1|

1
2C1B1

Since Ã1 is p
2
- hyponormal and B∗1 is hyponormal, applying Theorem 2.3

Ã1(|A1|
1
2C1) = (|A1|

1
2C1)B

∗
1 .
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Applying Theorem 3.2, it follows that Ã1|ran|A1|
1
2C1

and B1|ker(|A1|
1
2C1)

are nor-

mal.
Since |A1|

1
2C1 is injective, we have [ker(|A1|

1
2C1)]

⊥ = (kerC)⊥ and ran|A1|
1
2C1

= ran C and hence Ã1 is normal. Therefore A1 is normal by Lemma 2.1. Hence

A∗C =

(
A∗1C1 0

0 0

)
=

(
C1B

∗
1 0

0 0

)
= CB∗.

�

Theorem 3.3 If A ∈ B(H) be p-w hyponormal (0 < p ≤ 1) such that
ker A ⊂ ker A∗ and B∗ ∈ B(K) be class Y. If AC =CB for some operator
C ∈ B(K,H), then A∗C = CB∗.

Proof. Decompose A into normal part A1 and pure part A2 as

A = A1 ⊕ A2 on H = H1 ⊕H2

and let

C =

(
C1

C2

)
on K → H1 ⊕H2

Since kerA2 ⊂ kerA∗2 and A2 is pure, A2 is injective. AC =CB implies(
A1C1

A2C2

)
=

(
C1B1

C2B2

)
Hence

A∗C =

(
A∗1C1

A∗2C2

)
=

(
C1B

∗
1

C2B
∗
2

)
= CB∗

by Theorem 3.2. �

Theorem 3.4 If A ∈ B(H) be p − w - hyponormal (0 < p ≤ 1) such that
kerA ⊂ kerA∗ and B∗ ∈ B(K) be class Y, then the range of δAB is orthogonal
to the null space of δAB.

Proof. The pair (A,B) verify the Fuglede-Putnam theorem by Theorem 3.2.
Let C ∈ B(H). According to the following decompositions of H.

H = H1 = ranC ⊕ ranC
⊥
,H = H2 = kerC⊥ ⊕ kerC

we can write A,B,C and X

A =

(
A1 0
0 A2

)
, C =

(
B1 0
0 B2

)
, C =

(
C1 0
0 0

)
, X =

(
X1 X2

X3 X4

)
,
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where A1 and B1 are normal operators and X is an operator from H1 to H2.
Since AC = CB, A1C1 = C1B1. Hence

AX −XB − C =

(
A1X1 −X1B1 − C1 A2X2 −X2B2

A1X3 −X3B1 A2X4 −X4B2

)
Since C1 ∈ ker(δA1,B1) and A1 and B1 are normal operators , it yields

||AX −XB − C|| ≥ ||A1X1 −X1B1 − C1|| ≥ ||C1|| = ||C||, for all X ∈ B(H)

This means that the range of δA,B is orthogonal to the null space of δA,B. �

4 Open Problem

The open problem here is to find classes of nonnormal of operators satisfying
the Fuglede-Putnam Property and consequently we obtain the range kernel
orthogonality results.

5 Acknowledgments

The authors would like to thank the referees for the useful comments and
suggestions.

References

[1] A. Aluthge, On p−hyponormal operators for 0 < p < 1 , Integral equa-
tions operator theory., 13 (1990), 307 - 315.

[2] A. Aluthge and D. Wang, On w -hyponormal operators, Integral equa-
tions operator theory., 36 (2000), 1 -10.

[3] J. Anderson and C. Foias, Properties which normal normal operators
share with normal derivations and related operators, Pacific J. Math.,
61(1975), 313325

[4] A. Bachir, Fuglede - Putnam’s theorem for p - hyponormal or Y opera-
tors, Ann. Funct. Anal. 4 (2013), no. 1, 53-60.

[5] R. G. Douglas, On majorization, factorization, and range inclusion of
operators on Hilbert space, Proc. Amer. Math. Soc., 17 (1966), 413 - 415.

[6] B. P. Duggal, Quasi similar p - hyponormal operators, Integr. Equat.
Oper. Th., 26 (1996), 338 - 345.



24 T. Prasad and A. Bachir

[7] B. Fuglede,A commutativity theorem for normal operators, Proc. Nat.
Acad. Sci., USA, 36 (1950), 35 - 40.

[8] S. Mecheri, K. Tanahashi and A. Uchiyama, Fuglede - Putnam’s the-
orem for p - hyponormal or class Y operators, Bull. Korean. Math.
Soc.,43(2006), 747-753.

[9] C. R. Putnam, On normal operators in Hilbert spaces, Amer. J. math.,
73, (1951), 357 - 362.

[10] K. Takahashi, On the converse of the Fuglede - Putnam theorem, Acta.
Sci. Math (Szeged)., 43, (1981), 123-125.

[11] A. Uchiyama and T. Yoshino, On the class Y operators, Nihonkai Math.
J., 8 (1997), 179- 194.

[12] J. G. Stampfli and B. L. Wadhwa, On dominant operators, Monatsh.
Math., 84 (1977), 143 - 153

[13] Yang Changsen Li Haiying, Properties of p-w-hyponormal operators,
Appl. Math. J. Chinese Univ. Set. B2006,21(1): 64-68

[14] Yang Changsen and Li Haiying, A note on p-w-hyponormal operators,
Acta Mathematica Sinica (Chinese), 2006, 49(1)19-25.


	Introduction 
	Preliminaries
	Main Results
	Open Problem
	Acknowledgments

